Environmental Engineering Reference
In-Depth Information
Applying the initial condition u t (
x
,
0
)=
0 yields
+
n = 1 ( A n α n + B n β n ) sin n π x
l =
0
.
Thus
A n α n
β n
A n α n +
B n β n =
0or B n =
.
Finally, the solution of PDS (6.19) is
+
n = 1 e α n t
sin n
π
x
u
(
x
,
t
)=
(
A n cos
β n t
+
B n sin
β n t
)
,
l
l
0 ϕ ( ξ )
2
l
sin n
πξ
l
A n =
d
ξ ,
(6.21)
l
0 ϕ ( ξ )
B n =
2
α
sin n
πξ
l
n
d
ξ .
l
β n
Solution from Source Term f
(
x
,
t
)
Solve
A 2 u xx +
B 2 u txx +
u t / τ 0 +
u tt =
f
(
x
,
t
) ,
(
0
,
l
) × (
0
, + ) ,
u
(
0
,
t
)=
u
(
l
,
t
)=
0
,
(6.22)
(
,
)=
,
(
,
)=
.
u
x
0
0
u t
x
0
0
Solution. Based on the given boundary conditions, let
+
n = 1 T n ( t ) sin n π x
T n (
u
(
x
,
t
)=
,
T n (
0
)=
0
)=
0
.
(6.23)
l
l
+
n = 1 f n ( t ) sin n π x
2
l
sin n
πξ
l
f
(
x
,
t
)=
,
f n (
t
)=
f
( ξ ,
t
)
d
ξ .
l
0
Substituting them into the equation of PDS (6.22) yields
1
τ 0 +
2 T n (
n
n
2
π
B
π
A
T
n
(
t
)+
t
)+
T n (
t
)=
f n (
t
) .
(6.24)
l
l
Its corresponding homogeneous equation is Eq. (6.17). The solution of Eq. (6.24)
subject to T n (
T n (
0
)=
0
)=
0 can be written as, by variation of constants,
c ( n )
1
c ( n )
2
e α n t cos
e α n t sin
T n (
t
)=
(
t
)
β n t
+
(
t
)
β n t
,
(6.25)
Search WWH ::




Custom Search