Environmental Engineering Reference
In-Depth Information
β n ,
if
β n =
0
,
β n =
(
,
)= ψ (
)
where
Applying the initial condition u t
x
0
x
yields
1
,
if
β n =
0
.
+
n = 1 B n β n sin n π x
l = ψ (
x
) .
Thus
l
0 ψ ( ξ )
2
sin n
πξ
l
B n =
d
ξ .
l
β n
Finally, the solution of PDS (6.15) is
+
n = 1 B n e α n t sin β n t sin n π x
(
,
)=
,
u
x
t
l
(6.18)
l
0 ψ ( ξ )
2
sin n
πξ
l
=
ξ .
B n
d
l
β n
Solution from Initial Temperature
ϕ (
x
)
Solve
A 2 u xx
B 2 u txx
u t
/ τ
+
u tt
=
+
, (
0
,
l
) × (
0
, + ) ,
0
u
(
0
,
t
)=
u
(
l
,
t
)=
0
,
(6.19)
u
(
x
,
0
)= ϕ (
x
) ,
u t (
x
,
0
)=
0
.
Solution. Based on the given boundary conditions, let
+
n = 1 T n ( t ) sin n π x
u
(
x
,
t
)=
.
l
The T n
(
t
)
can be determined by substituting it into the equation in PDS (6.19). Thus
+
n = 1 e α n t
sin n
π
x
u
(
x
,
t
)=
(
A n cos
β n t
+
B n sin
β n t
)
.
(6.20)
l
Applying the initial condition u
(
x
,
0
)= ϕ (
x
)
leads to
l
0 ψ ( ξ )
2
l
sin n
πξ
l
A n =
d
ξ .
By taking the derivative of Eq. (6.20) with respect to t , we obtain
n = 1 α n e α n t
+
u t (
x
,
t
)=
(
A n cos
β n t
+
B n sin
β n t
)
) sin n
π
x
e α n t
+
(
A n
β
n sin
β
n t
+
B n
β
n cos
β
n t
.
l
 
Search WWH ::




Custom Search