Environmental Engineering Reference
In-Depth Information
G can be expanded by using the complete and orthogonal set (Table 2.1)
sin μ n y
n
= μ n
sin μ m x
l 1
=
l 2 + ϕ
,
l 2 h 1 .
u 37
tan
ϕ
n
By multiplying the factor, we may obtain the general term of G , thus
sin μ n η
l 2 + ϕ n
0 +
τ 0 γ mn M mn sin μ
1
ξ
sin μ
m x
l 1
t
τ
e
m
G
=
l 1
m
,
n
=
1
(4.43)
sin μ n y
l 2 + ϕ n sin
·
γ mn (
t
τ ) .
Finally,
t
u 3 =
d
τ
G
(
x
, ξ
; y
, η
; t
τ )
f
( ξ , η , τ )
d
σ .
(4.44)
0
D
2. The solution of PDS (4.42) at f
= ϕ =
0 is, by Eqs. (4.41) and (4.43),
sin μ n y
n sin
m , n = 1 b mn sin μ m x
t
e
u 2 =
W ψ (
x
,
y
,
t
)=
2
τ 0
l 2 + ϕ
γ
mn t
,
l 1
sin μ n y
l 2 + ϕ n d
(4.45)
1
γ mn M mn
sin μ m x
l 1
b mn =
ψ (
x
,
y
)
σ .
D
3. W ϕ (
x
,
y
,
t
)
may be readily obtained simply by replacing
ψ (
x
,
y
)
in Eq. (4.45) by
ϕ (
x
,
y
)
. The solution of PDS (4.42) at f
= ψ =
0 is thus
1
W ϕ (
τ 0 +
u 1 =
x
,
y
,
t
) .
(4.46)
t
4. The solution of PDS (4.42) is, by the principle of superposition,
u
(
x
,
y
,
t
)=
u 1 (
x
,
y
,
t
)+
u 2 (
x
,
y
,
t
)+
u 3 (
x
,
y
,
t
) .
Remark 5. If
γ mn has a purely imaginary value such as
γ mn = ω mn i, the factor
γ mn t γ mn can be transformed into a real exponential function.
sin
γ mn t γ mn =
1
ω mn i sin i
1
ω mn sh
sin
ω mn t
=
ω mn t
1
e ω mn t
e ω mn t
=
ω mn (
) .
2
t
0
reads e
e ω mn t
e ω mn t
For
this case,
the factor
involving time t
(
)=
e
t
1
2
τ 0 + ω mn t , which is bounded as t
1
1
2
ω mn
e
2
τ 0
+
because 0
< ω
<
τ 0 .
mn
 
Search WWH ::




Custom Search