Environmental Engineering Reference
In-Depth Information
Step 3 . Construct the general term of G by multiplying the factor,
1
τ 0 γ mn M mn u ij
t τ
2
e
τ 0
(
x
,
y
)
u ij
( ξ , η )
sin
γ
(
t
τ ) .
mn
Here M mn =
M m M n , the product of the normal squares of the two sets of eigen-
and Y j (
) ,
functions
{
X i (
x
) }
y
4
1
2
0 a 2
γ
=
τ
( λ
+ λ
)
1
,
mn
m
n
τ
0
λ
m and
λ
n are the eigenvalues corresponding to X i
(
x
)
and Y j
(
y
)
, respectively.
Finally,
1
τ 0 γ mn M mn u ij (
t τ
2
e
G
(
x
, ξ
; y
, η
; t
τ )=
τ 0
x
,
y
)
u ij ( ξ , η )
sin
γ mn (
t
τ ) ,
(4.39)
where u ij (
x
,
y
)
u ij ( ξ , η )=
X i ( ξ )
X i (
x
)
Y j ( η )
Y j (
y
)
.
Remark 4. We can readily write out W ψ (
x
,
y
,
t
)
from the Green function G
(
x
, ξ
; y
, η
; t
τ )
in Eq. (4.39). This can be achieved simply by letting
τ =
0 and replacing
1
τ 0 γ mn M mn u ij ( ξ , η )
by the Fourier coefficients
1
γ mn M mn
b mn =
ψ (
x
,
y
)
u ij (
x
,
y
)
d
σ .
(4.40)
D
Therefore
t
0
e
W ψ (
x
,
y
,
t
)=
b mn u ij (
x
,
y
)
sin
γ mn t
,
(4.41)
1
γ mn M mn
b mn =
ψ (
x
,
y
)
u ij (
x
,
y
)
d
σ .
D
Example 3. Solve
a 2
u t
+ τ
0 u tt
=
Δ
u
+
f
(
x
,
y
,
t
) ,
D
× (
0
, + ) ,
u
(
0
,
y
,
t
)=
u x (
l 1 ,
y
,
t
)+
h 2 u
(
l 1 ,
y
,
t
)=
0
,
(4.42)
u y (
x
,
0
,
t
)
h 1 u
(
x
,
0
,
t
)=
u
(
x
,
l 2 ,
t
)=
0
,
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
u t (
x
,
y
,
0
)= ψ (
x
,
y
) .
Solution.
(
,
,
)
ϕ =
1. We first seek the solution due to f
x
y
t
, i.e. the solution of PDS (4.42) at
ψ =
0. Based on the given boundary conditions,
 
Search WWH ::




Custom Search