Environmental Engineering Reference
In-Depth Information
Example 1. Solve
a 2
+ τ
=
+
(
,
,
) ,
× (
, + ) ,
u t
0 u tt
Δ
u
f
x
y
t
D
0
u
(
0
,
y
,
t
)=
u x
(
l 1
,
y
,
t
)+
hu
(
l 1
,
y
,
t
)=
0
,
(4.25)
u y (
x
,
0
,
t
)=
u y (
x
,
l 2 ,
t
)+
hu
(
x
,
l 2 ,
t
)=
0
,
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
u t (
x
,
y
,
0
)= ψ (
x
,
y
) .
Solution. We fir s t deve l op W ψ (
0. By taking
the boundary conditions into account, we use the eigenfunctions in Rows 3 and 6 in
Table 2.1 to expand the solution
x
,
y
,
t
)
, the solution of (4.25) at
ϕ =
f
=
+
m , n = 1 T mn ( t ) sin α m x cos β n y ,
u
=
(4.26)
m l 1
= μ n l 2 .
μ n are the positive zero-points of f
where
α
= μ
, β
μ
m and
(
x
)=
m
n
y
l 2 h , respectively.
Substituting Eq. (4.26) into the equation of (4.25) with f
x
l 1 h and g
tan x
+
(
x
)=
cot y
=
0 yields
T mn + α
n a 2 T mn =
τ 0 T mn +
2
m
2
+ β
0
.
(4.27)
Its general solution is
t
e
T mn (
t
)=
2
τ 0
(
a mn cos
γ mn t
+
b mn sin
γ mn t
) ,
where a mn and b mn are undetermined constants, and
sin
4
1
2
γ mn t
, γ mn =
0
,
m
n
a 2
γ mn =
τ 0 ( α
+ β
)
1
,
sin
γ mn t
=
t
,
γ
=
0
.
τ
mn
0
We thus obtain
+
m , n = 1 e t
u
=
2
τ 0
(
a mn cos
γ mn t
+
b mn sin
γ mn t
)
sin
α m x cos
β n y
.
(4.28)
Applying the initial condition u
(
x
,
y
,
0
)=
0 yields a mn =
0. To satisfy the initial
condition u t (
x
,
y
,
0
)= ψ (
x
,
y
)
, b mn must be determined such that
γ mn , γ mn =
+
m , n = 1 b mn γ mn sin α m x cos β n y = ψ ( x , y ) ,
0
,
γ mn =
1
,
γ mn =
0
.
Therefore
1
γ mn M mn
b mn =
ψ (
x
,
y
)
sin
α m x cos
β n y d
σ ,
D
 
Search WWH ::




Custom Search