Environmental Engineering Reference
In-Depth Information
where M mn =
M m M n , M m and M n are the normal square of the two eigenfunction
sets
, respectively. Finally, the solution of PDS (4.25) is, by
the solution structure theorem,
{
sin
α m x
}
and
{
cos
β n y
}
1
τ
W ϕ (
t
0 +
u
=
x
,
y
,
t
)+
W ψ (
x
,
y
,
t
)+
W f τ (
x
,
y
,
t
τ )
d
τ ,
t
0
, τ ) τ 0 .
Example 2. Find the solution of Eq. 4.28
where f τ =
f
(
x
,
y
a 2
u t + τ 0 u tt =
Δ
u
+
f
(
x
,
y
,
t
) ,
D
× (
0
, + ) ,
u
(
0
,
y
,
t
)=
u x (
l 1 ,
y
,
t
)=
0
,
(4.29)
u y (
x
,
0
,
t
)=
u y (
x
,
l 2 ,
t
)=
0
,
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
u t (
x
,
y
,
0
)= ψ (
x
,
y
) .
Solution. We first find the Green function G
(
x
, ξ
; y
, η
; t
τ )
satisfying
a 2
G t + τ 0 G tt =
Δ
G
,
D
,
0
< τ <
t
< + ,
G y y = 0 =
G y y = l 2 ,
G
| x = 0 =
G x | x = l 1 =
.
(4.30)
η ) τ 0
G
| t = τ =
0
,
G t | t = τ = δ (
x
ξ ,
y
.
Based on the given boundary conditions in (4.30), we use the eigenfunctions in
Rows 2 and 5 in Table 2.1 to expand
+
m , n = 0 T mn ( t ) sin ( 2 m + 1 ) π x
cos n
π
y
l 2 ,
G
=
2 l 1
where T mn (
t
)
is the undetermined function. Substituting it into the equation of (4.30)
leads to
(
2 a 2 T mn =
2
n
2 m
+
1
) π
π
l 2
τ 0 T mn +
T mn +
+
0
.
2 l 1
Its general solution reads
t τ
2
e
T mn
(
t
)=
[
a mn cos
γ
(
t
τ )+
b mn sin
γ
(
t
τ )] ,
τ 0
mn
mn
where a mn and b mn are the undertermined constants, and
4
(
2 a 2
2
n
1
2
2 m
+
1
) π
π
l 2
γ mn =
τ 0
+
1
.
τ
2 l 1
0
 
Search WWH ::




Custom Search