Civil Engineering Reference
In-Depth Information
REFERENCES
[7.1] M. ˚ lenius, Finite element modelling of composite bridge stability. MSc Thesis,
Department of Mechanics, Royal Institute of Technology, Stockholm, 2003.
[7.2] K.E. Barth, H. Wu, Efficient nonlinear finite element modeling of slab on steel
stringer bridges, J. Constr. Steel Res. 42 (2006) 1304-1313.
[7.3] Z.P. Bazant, L. Cedolin, Blunt crack band propagation in finite element analysis, J.
Eng. Mech. Div. 105 (1980) 279-315.
[7.4] W. Chung, E.D. Sotelino, Three-dimensional finite element modeling of composite
girder bridges, Eng. Struct. 28 (2006) 63-71.
[7.5] A.K. Gupta, P.S. Ma, Error in eccentric beam formulation, Int. J. Numer. Methods
Eng. 11 (1977) 1473-1477.
[7.6] R.E. Miller, Reduction of the error in eccentric beam modeling, Int. J. Numer.
Methods Eng. 15 (1980) 575-582.
[7.7] A.K. Khaleel, R.Y. Itani, Live-load moments for continuous skew bridges, J. Struct.
Eng. ASCE 116 (9) (1990) 2361-2373.
[7.8] E.A. Sadek, S.A. Tawfik, A finite element model for the analysis of stiffened laminated
plates, Comput. Struct. 75 (4) (2000) 369-383.
[7.9] L.P. Carden, I.G. Buckle, A.M. Itani, Transverse displacement capacity and stiffness
of steel plate girder bridge superstructures for seismic loads, J. Constr. Steel Res.
63 (2007) 1546-1559.
[7.10] A.V. Bapat, Influence of bridge parameters on finite element modelling of slab on
girder bridges. MSc Thesis, The Virginia Polytechnic Institute and State University,
Blacksburg, VA, 2009.
[7.11] K. Liu, G.D. Roe, Parametric study and fatigue-life-cycle design of shear studs in
composite bridges, J. Constr. Steel Res. 65 (2009) 1105-1111.
[7.12] C. Odenbreit, A. Leffer, M. Feldmann, Fatigue Behavior of Shear Studs to Transfer
Dynamic Loads Between Steel and Concrete Construction Elements, Sea Tech
Week-Fatigue of Maritime Structures, Brest, 2004.
[7.13] T.R. Brackus, Destructive Testing and Finite-Element Modeling of Full-Scale Bridge
Sections Containing Precast Deck Panels, Civil and Environmental Engineering,
Utah State University, Logan, UT, 2010.
[7.14] I. Vayas, T. Adamakos, A. Iliopoulos, Three dimensional modeling for steel-concrete
composite bridges using systems of bar elements—modeling of skewed bridges, Int. J.
Steel Struct. 11 (2) (2011) 1-13.
[7.15] I. Vayas, T. Adamakos, A. Iliopoulos, Modeling of steel-composite bridges, spatial
systems vs. grillages, in: Proceedings of the 9th International Conference on Steel
Concrete Composite and Hybrid Structures, the Organized Institution, UK, 2009.
[7.16] I. Vayas, A. Iliopoulos, T. Adamakos, Spatial systems for modelling steel-concrete
composite bridges-comparison of grillage systems and FE models, Steel Constr.
Des. Res. 3 (2) (2010) 100-111.
[7.17] T. Adamakos, I. Vayas, S. Petridis, A. Iliopoulos, Modeling of curved composite I-girder
bridges using spatial systems of beam elements, J. Constr. Steel Res. 67 (2011) 462-470.
[7.18] F. Gara, G. Ranzi, G. Leoni, Simplified method of analysis accounting for shear-lag
effects in composite bridge decks, J. Constr. Steel Res. 67 (2011) 1684-1697.
[7.19] H. Somja, S. Kaing, A. Lachal, New beam-to-beam joint with concrete embedding
for composite bridges: experimental study and finite element modelling, J. Constr.
Steel Res. 77 (2012) 210-222.
[7.20] FineLg User's Manual, V9.2, Greisch Info, Department ArGEnCo, Ulg, 2011.
[7.21] F. Frey, L'analyse statique non lin´aire des structures par lam´thode des ´l´ments finis
et son application ` la constructionm´tallique. Doctoral Thesis, Universit´ de Li`ge,
1977.
 
Search WWH ::




Custom Search