Civil Engineering Reference
In-Depth Information
F Ed L ð maximum ¼ 2999 1
:
3 + 2629
:
9 1
:
35
¼ 7449
:
1 kN Tension force
ð
Þ
F L : L : L ðÞ negative
ð
Þ ¼ 0
:
5 60 1
:
28 0
:
83 ¼ 31
:
9kN
F Ed L ð minimum ¼ 2999 1
:
3 31
:
9 1
:
35
¼ 3855
:
6 kN Tension force
ð
Þ
It should be noted that, from the equilibrium of the truss (see
Figure 4.58 ), the force in upper chord truss member U 2 is equal to that
of the calculated lower chord member L 3 but with a negative sign (a com-
pression force of 7449.1 kN).
4.3.3.6 Calculation of Force in the Lower Chord Member L 2
The force in member L 2 due to the dead and live loads can be calculated,
as shown in Figure 4.59 , as follows:
F D : L : L ðÞ¼ 0
:
5 60 0
:
72 78
:
1 ¼ 1687 kN
F L : L : L ðÞ¼ 375 0
ð
:
72 + 0
:
704
Þ +0
:
5 60 0
:
72 43
:
8 ¼ 1480
:
1kN
F Ed L ðÞ¼F D : L : g g + F L : L : g q
F Ed L ð maximum ¼ 1687 1
:
3 + 1480
:
1 1
:
35
¼ 4191
:
2 kN Tension force
ð
Þ
F L : L : L ðÞ negative
ð
Þ ¼ 0
:
5 60 0
:
72 0
:
83 ¼ 17
:
9kN
F Ed L ð minimum ¼ 1687 1
:
3 17
:
9 1
:
35
¼ 2168
:
9 kN Tension force
ð
Þ
s
U 2
a
B
L 1
L 2
A
s
54 m
6 m
g vk = 78.1 kN/m
375 kN 375 kN
q vk = 43.8 kN/m
1.2 m
+
0.704
6 × 54/(60 × 7.5) = 0.72
Figure 4.59 Determination of the tensile force in lower chord member L 2 using the
influence line method.
 
 
Search WWH ::




Custom Search