Information Technology Reference
In-Depth Information
3. Timler, J., Lent, C.: Maxwell's demon and quantum-dot cellular automata. J. Appl. Phys.
94, 1050-1060 (2003)
4. Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. J. Sig. Proc. Syst.
58(1), 87-103 (2010)
5. Hänninen, I., Takala, J.: Binary multipliers on quantum-dot cellular automata. Facta
Universitatis 20(3), 541-560 (2007)
6. Hänninen, I., Takala, J.: Irreversible bit erasures in binary adders. In: Proceedings of the
10th IEEE Conference on Nanotechnology, Seoul, Republic of Korea, 17-20 August 2010,
pp. 223-226 (2010)
7. Hänninen, I., Takala, J., Lent, C.: Irreversible bit erasures in binary multipliers. In:
Proceedings of the 2011 IEEE International Symposium on Circuits and Systems, Rio de
Janeiro, Brazil, 15-18 May 2011, pp. 2369-2372 (2011)
8. Hänninen, I., Takala, J.: Irreversibility induced density limits and logical reversibility in
nanocircuits.
In:
Proceedings
of
IEEE/ACM
International
Symposium
on
Nanoscale
Architectures, Amsterdam, The Netherlands, 4-6 July 2012
9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res.
Dev. 5, 183-191 (1961)
10. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer's principle linking information and thermodynamics.
Nature 483, 187-189 (2012). http://dx.doi.org/10.1038/nature10872
11. Valiev, K.A., Starosel'skii, V.I.: A model and properties of a thermodynamically reversible
logic gate. Russian Microelectron. 29(2), 83-98 (2000)
12. Younis, S.G.: Asymptotically zero energy computing using split-level charge recovery
logic. Ph.D. thesis (1994). http://dspace.mit.edu/handle/1721.1/7058
13. Starosel'skii, V.I.: Adiabatic logic circuits: a review. Russian Microelectron. 31(1), 37-58 (2002)
14. Lim, J., Kim, D.-G., Chae, S.-I.: Reversible energy recovery logic circuit and its 8-phase
clocked
power
generator
for
ultra-low-power
applications.
IEICE
Trans.
Electron.
E82-C(4), 646-653 (1999)
15. Lim, J., Kim, D.-G., Chae, S.-I.: nMOS reversible energy recovery logic for ultra-low-
energy applications. IEEE J. Solid-State Circuits 35(6), 865-875 (2000)
16. Yibin, Y., Roy, K.: Energy recovery circuits using reversible and partially reversible logic.
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 43(9), 769-778 (1996). doi: 10.1109/
81.536746
17. Dueck, G.W.: Synthesis of Toffoli Networks: status and challenges. In: International
Symposium on Electronic System Design (ISED), 19-22 December 2012, pp. 11-16
(2012). doi: 10.1109/ISED.2012.26
18. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the
limits to binary logic scaling. Nanotechnology 17(16), 4240-4251 (2006)
19. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525-532 (1973)
20. Texas Instruments Inc.: The TTL Data Book for Design Engineers, 2nd edn, pp. 7-484-7-486.
Texas Instruments Inc., Dallas (1976)
21. Vladimirescu, A., Liu, S.: The simulation of MOS integrated circuits using SPICE2.
Technical report no. UCB/ERL M80/7, University of California, Berkeley (1980)
22. Arizona State University Predictive Technology Model (PTM) Website [Online]. http://
ptm.asu.edu
23. Weinstein, D., Bhave, S.A.: The resonant body transistor. Nano Lett. 10(4), 1234-1237
(2010). doi: 10.1021/nl9037517
24. Hänninen, I., Lent, C.S., Snider, G.L.: Models of irreversibility for binary adders. In:
Proceedings of IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), Invited paper, Columbus, OH, USA, 4-7 August 2013, pp. 1071-1074 (2013)
Search WWH ::




Custom Search