Information Technology Reference
In-Depth Information
9. Yuasa, S., Djayaprawira, D.: Giant tunnel magnetoresistance in magnetic tunnel
junctions with a crystalline MgO (0 0 1) barrier. J. Phys. D: Appl. Phys. 40 (21),
R337 (2007)
10. Thomson, W.: Tunneling between ferromagnetic films. Proc. R. Soc. Lond. 8 , 546
(1856)
11. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54 (3), 225-226
(1975)
12. Yuasa, S., Fukushima, A., Kubota, H., Suzuki, Y., Ando, K., et al.: Giant tunneling
magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co
magnetic tunnel junctions with bcc Co (001) electrodes. Appl. Phys. Lett. 89 (4),
42505-42505 (2006)
13. Maekawa, S. (ed.): Concepts in Spin Electronics. Oxford Science Publications,
Oxford (2006)
14. Lin, C., Kang, S., Wang, Y., Lee, K., Zhu, X., Chen, W., Li, X., Hsu, W., Kao, Y.,
Liu, M., et al.: 45 nm low power CMOS logic compatible embedded STT MRAM
utilizing a reverse-connection 1T/1MTJ cell. In: 2009 IEEE International Electron
Devices Meeting (IEDM), pp. 1-4. IEEE (2009)
15. Chen, E., Apalkov, D., Diao, Z., Driskill-Smith, A., Druist, D., Lottis, D., Nikitin,
V., Tang, X., Watts, S., Wang, S., et al.: Advances and future prospects of spin-
transfer torque random access memory. IEEE Trans. Magn. 46 (6), 1873-1878
(2010)
16. Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for
nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11 (5), 940-947 (2012)
17. Niemier, M., Alam, M., Hu, X., Bernstein, G., Porod, W., Putney, M., DeAngelis,
J.: Clocking structures and power analysis for nanomagnet-based logic devices. In:
ISLPED, pp. 26-31. ACM, New York (2007)
18. Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: An NCL-HDL snake-clock-
based magnetic QCA architecture. IEEE Trans. Nanotechnol. 10 (5), 1141-1149
(2011)
19. Pulecio, J.F., Bhanja, S.: Magnetic cellular automata coplanar cross wire systems.
J. Appl. Phys. 107 (3), 034308-034308-5 (2010)
20. Cowburn, R., Adeyeye, A., Welland, M.: Controlling magnetic ordering in coupled
nanomagnet arrays. New J. Phys. 1 (1), 16 (1999)
21. Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata (MCA)
arrays. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19 (4), 714-717 (2011)
22. Csaba, G., Lugli, P., Csurgay, A., Porod, W.: Simulation of power gain and dissi-
pation in field-coupled nanomagnets. J. Comput. Electron. 4 (1), 105-110 (2005)
23. Das, J., Alam, S.M., Bhanja, S.: Low power CMOS-magnetic nano-logic with
increased bit controllability. In: 2011 11th IEEE Conference on Nanotechnology
(IEEE-NANO), pp. 1261-1266. IEEE (2011)
24. Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic archi-
tecture. IEEE TCAS-I 59 , 2008-2016 (2012)
25. Das, J., Alam, S.M., Bhanja, S.: Nanoelectronic Device Applications Handbook,
Chap. 60, vol. 16, 1st edn. CRC Press Llc, Boca Raton (2013)
26. International technology roadmap for semiconductor (2009)
27. Donahue, M., Porter, D.: Oommf user's guide, version 1.0, interagency report nistir
6376. NIST, Gaithersburg, MD (1999)
28. Scheinfein, M.R.: LLG micromagnetics simulator
29. Karunaratne, D.K., Bhanja, S.: Study of single layer and multilayer nano-magnetic
logic architectures. J. Appl. Phys. 111 (7), 07A928-07A928-3 (2012)
Search WWH ::




Custom Search