Information Technology Reference
In-Depth Information
69. Morgon, N. H.; Calculation of proton affinity using the CR-CCSD[T]/ECP method.
Int. J. Quantum Chem. 2006 , 106, 2658-2663.
70. Danikiewicz, W.; How reliable are gas-phase proton affinity values of small carban-
ions? A comparison of experimental data with values calculated using Gaussian-3 and
CBS compound methods. Int. J. Mass Spectrometry . 2009 , 285, 86-94.
71. Rivera, A.; Moyano, D.; Maldonado, M.; and Reyes, J. R. A.; FT-IR and DFT studies
of the proton affinity of small aminal cages. Spectrochimica Acta Part A . 2009 , 74,
588-590.
72. Meot-Ner (Mautner) M.; Sieck, W. L.; Proton affinity ladders from variable-tempera-
ture equilibrium measurements. 1. A reevaluation of the upper proton affinity range. J.
Am. Chem. Soc . 1991 , 113, 4448-4460.
73. Hansel, A.; Oberhofer, N.; Lindinger, W.; Zenevich, V. A.; and Billing, G. B.; Vibra-
tional relaxation of NO + ( v ) in collisions with CH 4 : Experimental and theoretical stud-
ies. Int. J. Mass Spectr. 1999 , 185/186/187, 559-563.
74. Meot-Ner, M.; Ion thermochemistry of low-volatility compounds in the gas phase. 2.
Intrinsic basicities and hydrogen-bonded dimers of nitrogen heterocyclics and nucleic
bases. J. Am. Chem. Soc. 1979 , 101, 2396-2403.
75. Dixon, D. A.; and Lias, S. G.; In: Molecular Structure and Energetics, Physical Mea-
surements. Ed. Liebman, J. F.; Greenberg, A.; Deereld Beach, FL: VCH; 1987 , 2 .
76. Curtiss, L. A.; Raghavachari, K.; and Pople, P. A.; Gaussian-2 theory using reduced
M(i)lIer-Plesset orders. J. Chem. Phys. 1993 , 98, 1293-1298.
77. Del Bene, J. E., Molecular orbital study of the protonation of DNA bases, J. Phys.
Chem., 1983 , 87 , 367-371(1983).
78. Hammerum, S.; Heats of formation and proton affinities by the G3 method. Chem.
Phys. Lett. 1999 , 300, 529-532.
79. Fontaine, M.; Delhalle, J.; Defranceschi, M.; and Lecayon, G.; Preliminary theoretical
study of perfluorodimethyl ether and its protonated form. Int. J. Quant. Chem. 1993 ,
46, 171-181.
80. Ghosh, D. C.; and Islam, N.; Whether electronegativity and hardness are manifest two
different descriptors of the one and the same fundamental property of atoms—a quest.
Int. J. Quantum Chem. 2011 , 111, 40-51.
81. Ghosh, D. C.; and Islam, N.; A quest for the algorithm for evaluating the molecular
hardness. Int. J. Quantum Chem. 2011 , 111, 1931-1941.
82. Ghosh, D. C.; and Islam, N.; Determination of some descriptors of the real world
working on the fundamental identity of the basic concept and the origin of the electro-
negativity and the global hardness of atoms, Part 1: Evaluation of internuclear bond
distance of some heteronuclear diatomics. Int. J. Quantum Chem. 2011 , 111, 1942-
1949.
83. Ghosh, D. C.; and Islam, N.; Whether there is a hardness equalization principle analo-
gous to the electronegativity equalization principle—a quest. Int. J. Quantum Chem .
2011 , 111, 1961-1969.
84. Ghosh, D. C.; and Islam, N.; Determination of some descriptors of the real world
working on the fundamental identity of the basic concept and the origin of the elec-
tronegativity and the global hardness of atoms. Part 2: Computation of the dipole mo-
ments of some heteronuclear diatomics. Int. J. Quantum Chem. 2011 , 111, 2802-2810.
 
Search WWH ::




Custom Search