Information Technology Reference
In-Depth Information
52. Maksic, Z. B.; Eckert-Maksic, M.; and Klessinger, M.; Additivity of the proton af-
finity of polysubstituted benzenes: the ipso position. Chem. Phys. Lett. 1996 , 260,
572-576.
53. Eckert-Maksic, M.; Klessinger, M.; Antol, I.; and Maksic, Z. B.; Additivity of proton
affinities in disubstituted naphthalenes. J. Phys. Org. Chem. 1997 , 10, 415-419.
54. Howard, S. T.; Foreman, J. P.; and Edwards, P. G.; Correlated proton affinities of ar-
ylphosphines. Chem. Phys. Lett. 1997 , 264, 454-458.
55. Fernandez, M. T.; Williams, C.; Mason, R. S.; and Cabral, B. J. C.; Experimental
and theoretical proton affinity of limonene. J. Chem. Soc. Faraday Trans. 1998 , 94,
1427-1430.
56. Topola, I. A.; Burt, S. K.; Toscanob, M.; and Russob, N.; Protonation of glycine and
alanine: proton affinities, intrinsic basicities and proton transfer path. J. Molecular
Struct. (Theochem) . 1998 , 430, 41-49.
57. Jursic, B. S.; Complete basis set, Gaussian, and hybrid density functional theory evalu-
ation of the proton affinities of water and ammonia. J. Molecular Struct. (Theochem).
1999 , 490, 1-6.
58. Jursic, B. S.; Density functional theory and complete basis set ab initio evaluation of
proton affinity for some selected chemical systems. J. Mol. Struct. (Theochem). 1999 ,
487, 193-203.
59. Pérez, P.; Toro-Labbé, A.; and Contreras, R.; HSAB analysis of charge transfer in the
gas-phase acid-base equilibria of alkyl-substituted alcohols. J. Phys. Chem. A . 1999 ,
103, 11246-11249.
60. Vayner, E.; and Ball, D. W.; Ab initio and density functional optimized structures,
proton affinities, and heats of formation for aziridine, azetidine, pyrrolidine, and pi-
peridine. J. Molecular Struct. (Theochem) . 2000 , 496, 175-183.
61. Pérez, P.; Toro-Labbé, A.; and Contreras, R.; Global and local analysis of the gas-
phase acidity of haloacetic acids. J. Phys. Chem. A. 2000 , 104, 5882-5887.
62. Silva, C. O.; Silva, E. C. da; and Nascimento, M. A. C.; Ab initio calculations of ab-
solute p K a values in aqueous solution II. Aliphatic alcohols, thiols, and halogenated
carboxylic acids. J. Phys. Chem. A . 2000 , 104, 2402-2409.
63. Cerofolinia, G. F.; Marrone, A.; and Re, N.; Correlating proton affinity and HOMO en-
ergy of neutral and negatively charged bases. J. Molecular Struct. (Theochem) . 2002 ,
588, 227-232.
64. Miller, C. E.; and Francisco, J. S.; A quadratic configuration interaction study of the
proton affinity of acetic acid. Chem. Phys. Lett . 2002 , 364, 427-431.
65. Betowski, L. D.; and Enlow, M.; A high-level calculation of the proton affinity of
diborane. J. Molecular Struct. (Theochem) . 2003 , 638, 189-195.
66. Van Beelen, E. S. E.; Koblenz, T. A.; Ingemann, S.; and Hammerum, S.; Experimental
and theoretical evaluation of proton affinities of furan, the methylphenols, and the
related anisoles. J. Phys. Chem. A . 2004 , 108, 2787-2793.
67. Rao, J. S.; and Sastry, G. N.; Proton affinity of five-membered heterocyclic amines:
assessment of computational procedures. Int. J. Quantum Chem . 2006 , 106, 1217-
1224.
68. Dinadayalane, T. C.; Sastry, G. N.; and Leszczynskl, J.; Comprehensive theoretical
study towards the accurate proton affinity values of naturally occurring amino acids.
Int. J. Quantum Chem. 2006 , 106, 2920-2933.
 
Search WWH ::




Custom Search