Information Technology Reference
In-Depth Information
Hattotuwagama, C.K., Guan, P., Doytchinova, I.A., Zygouri, C., and Flower, D.R. (2004)
Quantitative online prediction of peptide binding to the major histocompatibility complex.
J. Mol. Graph. Model. 22:195-207.
Hennecke, J., and Wiley, D.C. (2002) Structure of a complex of the human α/β T-cell receptor
(TCR) HA1.7, influenza hemagglutinin peptide and major histocompatibility complex
class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401), insight into TCR cross-
restriction and alloreactivity. J. Exp. Med. 195:571-581.
Hudrisier, D., Mazarguil, H., Laval, F., Oldstone, M.B.A., and Gairin, J.E. (1996) Binding of
viral antigens to major histocompatibility complex class I H-2Db molecules is controlled
by dominant negative elements at peptide non-anchor residues. Implications for peptide
selection and presentation. J. Biol. Chem. 271:17829-17836.
Hunt, D.F., Michel, H., Dickinson, T.A., Shabanowitz, J., Cox, A.L., Sakaguchi, K., and
Appella, E. (1992) Peptides presented to the immune system by the murine class II major
histocompatibility complex molecule I-Ad. Science 256:1817-1820.
Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R., and Wiley, D.C. (1991) Identifi-
cation of self peptides bound to purified HLA-B27. Nature 353:326-329.
Klebe, G., Abraham, U., and Mietzner, T. (1994) Molecular similarity indices in a compara-
tive analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.
J. Med. Chem. 37:4130-4146.
Klebe, G., and Abraham, U. (1999) Comparative molecular similarity index analysis (CoMSIA)
to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput.
Aided Mol. Des. 13:1-10.
Kubinyi, H., and Kehrhahn, O.H. (1976) Quantitative structure-activity relationships. 3.1 A
comparison of different Free-Wilson models. J. Med. Chem. 19:1040-1049.
Li, Y., Li, H., Martin, R., and Mariuzza, R.A. (2000) Structural basis for the binding of an
immunodominant peptide from myelin basic protein in different registers by two HLA-
DR2 proteins. J. Mol. Biol. 304:177-188.
Liu, X., Dai, S., Crawford, F., Fruge, R., Marrack, P., and Kappler, J. (2002) Alternate interac-
tions define the binding of peptides to the MHC molecule IAb. Proc. Natl. Acad. Sci. USA
99:8820-8825.
Madden, D.R., Gorga, J.C., Strominger, J.L., and Wiley, D.C. (1991) The structure of HLA-B27
reveals nonamer self-peptides bound in an extended conformation. Nature 353:
321-325.
McFarland, B.J., Sant, A.J., Lybrand, T.P., and Beeson, C. (1999) Ovalbumin (323-339)
peptide binds to the major histocompatibility complex class II, I-A(d) protein using two
functionally distinct registers. Biochemistry 38:16663-16670.
McSparron, H., Blythe, M.J., Zygouri, C., Doytchinova, I.A., and Flower, D.R. (2003) JenPep,
a novel computational information resource for immunology and vaccinology. J. Chem.
Inf. Comput. Sci. 43:1276-1287.
Parker, K.C., Bednarek, M.A., and Coligan, J.E. (1994) Scheme for ranking potential HLA-A2
binding peptides based on independent binding of individual peptide side-chains. J.
Immunol. 152:163-175.
Rammensee, H.G., Friede, T., and Stevanovic, S. (1995) MHC ligands and peptide motifs,
first listing. Immunogenetics 41:178-228.
Rudensky, A.Y., Preston-Hurlburt, P., Hong, S.-C., Buus, S., and Tschinke, V. (1991) Sequence
analysis of peptides bound to MHC class II molecules. Nature 353:622-627.
Ruppert, J., Sidney, J., Celis, E., Kubo, R.T., Grey, H.M., and Sette, A. (1993) Prominent role of
secondary anchor residues in peptide binding to HLA-A*0201 molecules. Cell 74:929-937.
Saper, M.A., Bjorkman, P.J., and Wiley, D.C. (1991) Refined structure of the human
histocompatibility antigen HLA-A2 at 2.6A resolution. J. Mol. Biol. 219:277-319.
Search WWH ::




Custom Search