Information Technology Reference
In-Depth Information
Chicz, R.M., Urban, R.G., Gorga, J.C., Vignali, D.A.A., Lane, W.S., and Strominger, J.L.
(1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR
alleles. J. Exp. Med. 178:27-47.
Corper, A.L., Stratmann, T., Apostolopoulos, V., Scott, C.A., Garcia, K.C., Kang, A.S.,
Wilson, I.A., and Teyton, L. (2000) A structural framework for deciphering the link be-
tween I-Ag7 and autoimmune diabetes. Science 288:505-511.
Dessen, A., Lawrence, C.M., Cupo, S., Zaller, D.M., and Wiley, D.C. (1997) X-ray crystal
structure of HLA-DR4 (DRA*0101, DRB*0401) complexed with a peptide from human
collagen II. Immunity 7:473-481.
Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P. (1985) AM1, a new general
purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902-3909.
Doytchinova, I.A., and Flower, D.R. (2002a) Physicochemical explanation of peptide binding
to HLA-A*0201 major histocompatibility complex, a three-dimensional quantitative struc-
ture-activity relationship study. Proteins 48:505-518.
Doytchinova, I.A., and Flower, D.R. (2002b) A comparative molecular similarity index analy-
sis (CoMSIA) study identifies an HLA-A2 binding supermotif. J. Comput. Aided Mol.
Des. 16:535-544.
Doytchinova, I.A., Blythe, M.J., and Flower, D.R. (2002c) Additive method for the pre-
diction of protein-peptide binding affinity. Application to the MHC class I molecule
HLA-A*0201. J. Proteome Res. 1:263-272.
Doytchinova, I.A., and Flower, D.R. (2003) Towards the in silico identification of class II
restricted T-cell epitopes, a partial least squares iterative self-consistent algorithm for
affinity prediction. Bioinformatics 19:2263-2270.
Doytchinova, I.A., Walshe, V., Jones, N., Gloster, S., Borrow, P., and Flower, D.R. (2004)
Coupling in silico and in vitro analysis of peptide-MHC binding, a bioinformatic approach
enabling prediction of superbinding peptides and anchorless epitopes. J. Immunol.
172:7495-7502.
Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.G. (1991) Allele-
specific motifs revealed by sequencing of self-peptides eluted from MHC molecules.
Nature 351:290-296.Flower, D.R. (2003) Towards in silico prediction of immunogenic
epitopes. Trends Immunol. 24:667-674.
Fremont, D.H., Matsumura, M., Stura, E.A., Peterson, P.A., and Wilson, I.A. (1992) Crystal
structures of two viral peptides in complex with murine MHC class I H-2Kb. Science
257:919-927.
Fremont, D.H., Stura, E.A., Matsumura, M., Peterson, P.A., and Wilson, I.A. (1995) Crystal
structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and
secondary anchor positions in the major histocompatibility complex binding groove. Proc.
Natl. Acad. Sci. USA 92:2479-2483.
Fremont, D.H., Monnaie, D., Nelson, C.A., Hendrickson, W.A., and Unanue, E.R. (1998)
Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. Immunity
8:305-317.
Guan, P., Doytchinova, I.A., Zygouri, C., and Flower, D.R. (2003a) MHCPred, bringing a
quantitative dimension to the online prediction of MHC binding. Appl. Bioinformatics
2:63-66.
Guan, P., Doytchinova, I.A., and Flower, D.R. (2003b) HLA-A3 supermotif defined by quan-
titative structure-activity relationship analysis. Protein Eng. 16:11-18.
Guan, P., Doytchinova, I.A., and Flower, D.R. (2003c) A comparative molecular similarity
indices (CoMSIA) study of peptide binding to the HLA-A3 superfamily. Bioorg. Med.
Chem. 11:2307-2311.
Guan, P., Doytchinova, I.A., Zygouri, C., and Flower, D.R. (2003d) MHCPred, a server for
quantitative prediction of peptide-MHC binding. Nucleic Acids Res. 31:3621-3624.
Search WWH ::




Custom Search