Chemistry Reference
In-Depth Information
98. Jacobs PWM, Tompkins FC (1955) Classification and theory of solid reactions. In: Garner
WE (ed) Chemistry of the solid state. Butterworth, London, pp 184-212
99. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys
17:71-73
100. Devlin GJ, Herley PJ (1986) Thermal decomposition and dehydration of magnesium per-
chlorate hexahydrate. Thermochim Acta 104:159-178
101. Koga N, Kimizu T (2008) Thermal decomposition of indium(III) hydroxide prepared by the
microwave-assisted hydrothermal method. J Am Ceram Soc 91:4052-4058
102. Lide DR (ed) (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca
Raton
103. https://scripps.ucsd.edu/programs/keelingcurve/. Accessed Nov 2014
104. Sanders JP, Gallagher PK (2005) Kinetic analyses using simultaneous TG/DSC measure-
ments. Part II: decomposition of calcium carbonate having different particle sizes. J Therm
Anal Calorim 82:659-664
105. Zawadzki J, Bretsznajder S (1935) ᅵber das Temperaturinkrement der Reaktionsgeschwin-
digkeit bei Reaktionen vom Typus: A fest = B fest + C Gas . Z Elektrochem Angew Phys Chem
41:215-223
106. Pawlutschenko MM, Prodan EA (1965) Kristallisationsvorgange in der thermischen zerset-
zung fester stoffe. In: Schwab GM (ed). Reactivity of solids, 5th International symposium
of the reactivity of solids, Munich, 2-8 Aug 1964. Elsevier, Amsterdam, pp 409-421
107. Beruto D, Botter R, Searcy AW (1984) Thermodynamics and kinetics of carbon dioxide
chemisorption on calcium oxide. J Phys Chem 88:4052-4055
108. Maciejewski M, Reller A (1987) How (un)reliable are kinetic data of reversible solid-state
decomposition processes? Thermochim Acta 110:145-152
109. Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis
of isothermal and nonisothermal data. Thermochim Acta 340/341:53-68
110. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann
J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang
TB, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part
A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125-143
111. Maciejewski M (2000) Computational aspects of kinetic analysis. Part B: the ICTAC ki-
netics project—the decomposition kinetics of calcium carbonate revisited, or some tips on
survival in the kinetic minefield. Thermochim Acta 355:145-154
112. Vyazovkin S (2000) Computational aspects of kinetic analysis. Part C: the ICTAC kinetics
project—the light at the end of the tunnel? Thermochim Acta 355:155-163
113. Burnham AK (2000) Computational aspects of kinetic analysis. Part D: the ICTAC kinetics
project—multi-thermal-history model-fitting methods and their relation to isoconversional
methods. Thermochim Acta 355:165-170
114. Elder JP (1998) The “E-ln(A)-f(α)” triplet in non-isothermal reaction kinetics analysis
Thermochim Acta 318:229-238
115.
Gao Z, Amasaki I, Nakada M (2002) A description of kinetics of thermal decomposition of
calcium oxalate monohydrate by means of the accommodated R n model. Thermochim Acta
385:95-103
116.
Tan G, Tang D, Mua T, Xu C, Wang D, Wang Q (2014) The validity of nonlinear isoconver-
sional method in the kinetic analysis of calcium carbonate decomposition under isothermal
and non-isothermal conditions. Thermochim Acta 585:21-24
117.
Budrugeac P (2011) An iterative model-free method to determine the activation energy of
heterogeneous processes under arbitrary temperature programs. Thermochim Acta 523:84-
89
118.
Koga N, Criado JM (1998) The influence of mass transfer phenomena on the kinetic analy-
sis for the thermal decomposition of calcium carbonate by constant rate thermal dnalysis
(CRTA) under vacuum. Int J Chem Kinet 30:737-744
119.
Han Y, Chen H, Liu N (2011) New incremental isoconversional method for kinetic analysis
of solid thermal decomposition. J Therm Anal Calorim 104:679-683
Search WWH ::




Custom Search