Environmental Engineering Reference
In-Depth Information
39. Le Meins JM, Crosnier-Lopez MP et al (1999) Phase Transitions in the Na 3 M 2 (PO 4 ) 2 F 3
Family (M = Al 3+ ,V 3+ ,Cr 3+ ,Fe 3+ ,Ga 3+ ): Synthesis, Thermal, Structural, and Magnetic
Studies. J Solid State Chem 148:260-277
40. Zaghib K, Trottier J et al (2011) Characterization of Na-based phosphate as electrode
materials for electrochemical cells. J Power Sources 196:9612-9617
41. Lee KT, Ramesh TN et al (2011) Topochemical synthesis of sodium metal phosphate olivines
for sodium-ion batteries. Chem Mater 23:3593-3600
42. Moreau P, Guyomard D et al (2010) Structure and stability of sodium intercalated phases in
olivine FePO 4 . Chem Mater 22:4126-4128
43. Kim H, Park I et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium
rechargeable batteries: combined first principles calculations and experimental study. J Am
Chem Soc 134:10369-10372
44. Recham N, Chotard JN et al (2009) Ionothermal synthesis of sodium-based fluorophosphate
cathode materials. J Electrochem Soc 156:A993-A999
45. Ellis BL, Makahnouk WRM et al (2010) Crystal structure and electrochemical properties of
A 2 MPO 4 F Fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059-1070
46. Kawabe Y, Yabuuchi N et al (2011) Synthesis and electrode performance of carbon coated
Na 2 FePO 4 F for rechargeable Na batteries. Electrochem Commun 13:1225-1228
47. Wessells CD, McDowell MT et al (2012) Tunable reaction potentials in open framework
nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6:1688-1694
48. Qian J, Zhou M et al (2012) Nanosized Na 4 Fe(CN) 6 /C composite as a low-cost and high-rate
cathode material for sodium-ion batteries. Adv Energy Mater 2:410-414
49. Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-
and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14:111-115
50. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State
Ionics 28-30(Part 2):1172-1175
51. Doeff MM, Ma YP et al (1993) Electrochemical
insertion of sodium into carbon. J
Electrochem Soc 140:L169-L170
52. Thomas P, Billaud D (2000) Effect of mechanical grinding of pitch-based carbon fibers and
graphite on their electrochemical sodium insertion properties. Electrochim Acta 46:39-47
53. Alcantara R, Jimenez-Mateos JM et al (2001) Carbon black: a promising electrode material
for sodium-ion batteries. Electrochem Commun 3:639-642
54. Thomas P, Ghanbaja J et al (1999) Electrochemical insertion of sodium in pitch-based carbon
fibres in comparison with graphite in NaClO 4 -ethylene carbonate electrolyte. Electrochim
Acta 45:423-430
55. Thomas P, Billaud D (2001) Sodium electrochemical insertion mechanisms in various carbon
fibres. Electrochim Acta 46:3359-3366
56. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion
batteries. J Electrochem Soc 147:1271-1273
57. Alcantara R, Lavela P et al (2005) Carbon microspheres obtained from resorcinol-
formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State
Lett 8:A222-A225
58. Cao Y, Xiao L et al (2012) Sodium ion insertion in hollow carbon nanowires for battery
applications. Nano Lett 12:3783-3787
59. Komaba S, Murata W et al (2011) Electrochemical Na insertion and solid electrolyte
interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater
21:3859-3867
60. Stevens DA, Dahn JR (2000) An in situ small-angle X-ray scattering study of sodium
insertion into a nanoporous carbon anode material within an operating electrochemical cell. J
Electrochem Soc 147:4428-4431
61. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon
materials. J Electrochem Soc 148:A803-A811
62. Xiao
L,
Cao
Y
et
al
(2012)
High
capacity,
reversible
alloying
reactions
in
SnSb/C
nanocomposites for Na-ion battery applications. Chem Commun 48:3321-3323
Search WWH ::




Custom Search