Environmental Engineering Reference
In-Depth Information
16. Tepavcevic S, Xiong H et al (2012) Nanostructured bilayered vanadium oxide electrodes for
rechargeable sodium-ion batteries. ACS Nano 6:530-538
17. Hamani
D,
Ati
M
et
al
(2011)
Na x VO 2
as
possible
electrode
for
Na-ion
batteries.
Electrochem Commun 13:938-941
18. Onoda M (2008) Geometrically frustrated triangular lattice system Na x VO 2 :
superparamagnetism in x = 1 and trimerization in x approximate to 0.7. J Phys-Condens
Matter 20:145205
19. McQueen TM, Stephens PW et al (2008) Successive Orbital Ordering Transitions in NaVO 2 .
Phys Rev Lett 101:166402
20. Carlier D, Cheng JH et al (2011) The P2-Na 2/3 Co 2/3 Mn 1/3 O 2 phase: structure, physical
properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans
40:9306-9312
21. Komaba S, Nakayama T et al (2009) Electrochemically reversible sodium intercalation of
layered NaNi 0.5 Mn 0.5 O 2 and NaCrO 2 . ECS Trans 16:43-55
22. Mendiboure A, Delmas C et al (1985) Electrochemical intercalation and deintercalation of
NaMnO 2 bronzes. J Solid State Chem 57:323-331
23. Kim D, Kang SH et al (2011) Enabling sodium batteries using lithium-substituted sodium
layered transition metal oxide cathodes. Adv Energy Mater 1:333-336
24. Yabuuchi N, Kajiyama M et al (2012) P2-type Na x [Fe 1/2 Mn 1/2 ]O 2 made from earth-abundant
elements for rechargeable Na batteries. Nat Mater 11:512-517
25. Padhi AK, Nanjundaswamy KS et al (1997) Phospho-olivines as positive-electrode materials
for rechargeable lithium batteries. J Electrochem Soc 144:1188-1194
26. Martha SK, Markovsky B et al (2009) LiMnPO 4 as an advanced cathode material for
rechargeable lithium batteries. J Electrochem Soc 156:A541-A552
27. Lim SY, Kim H et al (2012) Electrochemical and thermal properties of NASICON structured
Na 3 V 2 (PO 4 ) 3 as a sodium rechargeable battery cathode: a combined experimental and
theoretical study. J Electrochem Soc 159:A1393-A1397
28. Shakoor RA, Seo DH et al (2012) A combined first principles and experimental study on
Na 3 V 2 (PO 4 ) 2 F 3 for rechargeable Na batteries. J Mater Chem 22:20535-20541
29. Kim H, Shakoor RA et al (2013) Na 2 FeP 2 O 7 as a promising iron-based pyrophosphate
cathode for sodium rechargeable batteries: a combined experimental and theoretical study.
Adv Funct Mater 23:1147-1155
30. Ellis BL, Makahnouk WRM et al (2007) A multifunctional 3.5 V iron-based phosphate
cathode for rechargeable batteries. Nat Mater 6:749-753
31. Wang L, Lu Y et al (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem
Int Ed 52:1964-1967
32. Kang J, Baek S et al (2012) High rate performance of a Na 3 V 2 (PO 4 ) 3 /C cathode prepared by
pyro-synthesis for sodium-ion batteries. J Mater Chem 22:20857-20860
33. Jian Z, Zhao L et al (2012) Carbon coated Na 3 V 2 (PO 4 ) 3 as novel electrode material for
sodium ion batteries. Electrochem Commun 14:86-89
34. Jian Z, Han W et al (2013) Superior electrochemical performance and storage mechanism of
Na 3 V 2 (PO 4 ) 3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156-
160
35. Uebou Y, Kiyabu T et al (2002) The reports of institute of advanced material study (vol 16).
Kyushu University, Fukuoka, p 1
36. Saravanan K, Mason CW et al (2013) The first report on excellent cycling stability and
superior rate capability of Na 3 V 2 (PO 4 ) 3 for sodium ion batteries. Adv Energy Mater 3:444-
450
37. Barker J, Saidi MY et al (2003) A sodium-ion cell based on the fluorophosphate compound
NaVPO 4 F. Electrochem Solid-State Lett 6:A1-A4
38. Serras P, Palomares V et al (2012) High voltage cathode materials for Na-ion batteries of
general formula Na 3 V 2 O 2x (PO 4 ) 2 F 3-2x . J Mater Chem 22:22301-22308
Search WWH ::




Custom Search