Environmental Engineering Reference
In-Depth Information
66. Wang Y, Tong SW, Xu XF, Oezyilmaz B, Loh KP (2011) Interface engineering of layer-by-
layer
stacked
graphene
anodes for
high-performance
organic
solar
cells.
Adv Mater
23(13):1514-1518
67. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth
of graphene films for stretchable transparent electrodes. Nature 457(7230):706
68. Pang S, Hernandez Y, Feng X, Muellen K (2011) Graphene as transparent electrode
material for organic electronics. Adv Mater 23(25):2779
69. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q et al (2011) Graphene-based materials:
synthesis, characterization, properties, and applications. Small 7(14):1876
70. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as
electrodes in electrical and optical devices. Nanotechnology 23(11):112001
71. Castañeda L (2011) Present status of the development and application of transparent
conductors oxide thin solid films. Mater Sci Appl 2:1233
72. Zhou H, Yi D, Yu Z, Xiao L, Li J (2007) Preparation of aluminum doped zinc oxide films
and the study of their microstructure, electrical and optical properties. Thin Solid Films
515(17):6909-6914
73. Kumar A, Zhou C (2010) The race to replace tin-doped indium oxide: which material will
win? ACS Nano 4(1):11
74. Wilken S, Hoffmann T, von Hauff E, Borchert H, Parisi J (2012) ITO-free inverted polymer/
fullerene solar cells: Interface effects and comparison of different semi-transparent front
contacts. Sol Energy Mater Sol Cells 96(1):141-147
75. O'Connor B, Haughn C, An K, Pipe KP, Shtein M (2008) Transparent and conductive
electrodes based on unpatterned, thin metal films. Appl Phys Lett 93(22):223304
76. Koeppe R, Hoeglinger D, Troshin PA, Lyubovskaya RN, Razumov VF, Sariciftci NS (2009)
Organic
solar
cells
with
semitransparent
metal
back
contacts
for
power
window
applications. Chemsuschem 2(4):309
77. O'Connor B, An KH, Pipe KP, Zhao Y, Shtein M (2006) Enhanced optical field intensity
distribution in organic
photovoltaic devices
using external
coatings.
Appl Phys Lett
89(23):233502
78. Meiss J, Furno M, Pfuetzner S, Leo K, Riede M (2010) Selective absorption enhancement in
organic solar cells using light incoupling layers. J Appl Phys 107(5):053117
79. Ajuria J, Etxebarria I, Cambarau W, Munecas U, Tena-Zaera R, Carlos Jimeno J et al (2011)
Inverted ITO-free organic solar cells based on p and n semiconducting oxides. New designs
for integration in tandem cells, top or bottom detecting devices, and photovoltaic windows.
Energy Environ Sci 4(2):453-458
80. Al-Ibrahim M, Sensfuss S, Uziel J, Ecke G, Ambacher O (2005) Comparison of normal and
inverse poly(3-hexylthiophene)/fullerene solar cell architectures. Sol Energy Mater Sol
Cells 85(2):277-283
81. Meiss J, Riede MK, Leo K (2009) Optimizing the morphology of metal multilayer films for
indium tin oxide (ITO)-free inverted organic solar cells. J Appl Phys 105(6):063108
82. Oyamada T, Sugawara Y, Terao Y, Sasabe H, Adachi C (2007) Top light-harvesting organic
solar cell using ultrathin Ag/MgAg layer as anode. Japan J Appl Phys Part 1-Regular Papers
Brief Communications & Review Papers 2007;46(4A):1734
83. Angmo D, Hösel M, Krebs FC (2012) All solution processing of ITO-free organic solar cell
modules directly on barrier foil. Sol Energy Mater Sol Cells 107:329-336
84. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications
of poly(3,4-ethylenedioxythiophene). J Mater Chem 15(21):2077
85. Levermore PA, Chen L, Wang X, Das R, Bradley DDC (2007) Highly conductive poly(3,4-
ethylenedioxythiophene) films by vapor phase polymerization for application in efficient
organic light-emitting diodes. Adv Mater 19(17):2379
86. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-
ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481
Search WWH ::




Custom Search