Environmental Engineering Reference
In-Depth Information
87. Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R (2004) Towards a
transparent,
highly
conductive
poly(3,4-ethylenedioxythiophene).
Adv
Funct
Mater
14(6):615
88. Hsiao Y, Whang W, Chen C, Chen Y (2008) High-conductivity poly(3,4-
ethylenedioxythiophene): poly(styrene sulfonate) film for use in ITO-free polymer solar
cells. J Mater Chem 18(48):5948-5955
89. Ouyang BY, Chi CW, Chen FC, Xi QF, Yang Y (2005) High-conductivity poly (3,4-
ethylenedioxythiophene):
poly(styrene
sulfonate)
film
and
its
application
in
polymer
optoelectronic devices. Adv Funct Mater 15(2):203
90. Chang Y, Wang L, Su W (2008) Polymer solar cells with poly(3,4-ethylenedioxythiophene)
as transparent anode. Org Electron 9(6):968
91. Zhang FL, Johansson M, Andersson MR, Hummelen JC, Inganas O (2002) Polymer
photovoltaic cells with conducting polymer anodes. Adv Mater 14(9):662
92. Admassie S, Zhang FL, Manoj AG, Svensson M, Andersson MR, Ingaas O (2006) A
polymer photodiode using vapour-phase polymerized PEDOT as an anode. Sol Energy
Mater Sol Cells 90(2):133
93. Ahlswede E, Hanisch J, Powalla M (2007) Comparative study of the influence of LiF, NaF,
and KF on the performance of polymer bulk heterojunction solar cells. Appl Phys Lett
90(16):163504
94. Do H, Reinhard M, Vogeler H, Puetz A, Klein MFG, Schabel W et al (2009) Polymeric
anodes from poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) for 3.5 % efficient
organic solar cells. Thin Solid Films 517(20):5900
95. Huang T, Huang C, Su Y, Chen Y, Fang J, Wen T (2010) Extension of active region in
crossbar-type polymer solar photovoltaics induced by highly conductive PEDOT:PSS buffer
layer. J Vac Sci Technol, B 28(4):702
96. Zhang XG, Butler WH (1995) Conductivity of metallic-films and multilayers. Phys Rev B
51(15):10085
97. Winther-Jensen B, Krebs FC (2006) High-conductivity large-area semi-transparent
electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition.
Sol Energy Mater Sol Cells 90(2):123
98. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S et al (2004)
Printable anodes for flexible organic solar cell modules. Thin Solid Films 451:22
99. Na S, Kim S, Jo J, Kim D (2008) Efficient and flexible ITO-free organic solar cells using
highly conductive polymer anodes. Adv Mater 20(21):4061
100. Hau SK, Yip H, Zou J, Jen AK (2009) Indium tin oxide-free semi-transparent inverted
polymer solar cells using conducting polymer as both bottom and top electrodes. Org
Electron 10(7):1401
101. Zhou Y, Cheun H, Choi S, Potscavage WJ Jr, Fuentes-Hernandez C, Kippelen B (2010)
Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl Phys Lett
97(15):153304
102. Larsen-Olsen TT, Machui F, Lechene B, Berny S, Angmo D, Søndergaard R et al (2012)
Round-robin studies as a method for testing and validating high-efficiency ITO-free
polymer solar cells based on roll-to-roll-coated highly conductive and transparent flexible
substrates. Adv Energy Mater 2(9):1091-1094
103. Tvingstedt K, Inganas O (2007) Electrode grids for ITO-free organic photovoltaic devices.
Adv Mater 19(19):2893
104. Kang M, Kim M, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent
metal electrodes. Adv Mater 20(23):4408
105. Cheknane A (2011) Optimal design of electrode grids dimensions for ITO-free organic
photovoltaic devices. Prog Photovoltaics 19(2):155-159
106. Galagan Y, Rubingh JJM, Andriessen R, Fan C, Blom PWM, Veenstra SC et al (2011) ITO-
free flexible organic solar cells with printed current collecting grids. Sol Energy Mater Sol
Cells 95(5):1339-1343
Search WWH ::




Custom Search