Biomedical Engineering Reference
In-Depth Information
2
4
3
5 ¼ Z
Z
dk T ð u u Þ dC u þ Z
Cu
k T ð u u Þ dC u
k T d ð u u Þ dC u
d
Cu
Cu
¼ Z
dk T ð u u Þ dC u þ Z
Cu
k T ð du du
Þ dC u
ð 3 : 39 Þ
|{z}
0
Cu
¼ Z
dk T ð u u Þ dC u þ Z
Cu
du T kdC u
Cu
Permitting to re-write the Eq. ( 2.65 ) as,
Z
d L ð T cL ð dX Z
du T b dX Z
du T t dC t Z
Cu
dk T ð u u Þ dC u
X
X
Ct
Z
Cu
ð 3 : 40 Þ
du T kdC u ¼ 0
From Eq. ( 3.1 ) it is possible to determine the virtual displacement approxi-
mation of the interest point q I 2 Q,
du ð q I Þ ¼ X
n
u i ð q I Þ du ð x i Þ ¼H local
du ð x Þ
| {z }
½3n 1
ð 3 : 41 Þ
I
|{z}
½3 3n
i¼1
being n the number of nodes inside the influence-domain of the interest point q I .
The virtual displacement on node x i 2 X is defined by du ð x i Þ and the local
diagonal shape function matrix H loca I defined by Eq. ( 3.23 ). Using the procedure
described in Fig. 3.17 it is possible to present Eq. ( 3.41 ) using the global arrays,
du ð q I Þ ¼ H I
du ð x Þ
| {z }
½3N 1
ð 3 : 42 Þ
|{z}
½3 3N
In the classic three-dimensional deformation theory assuming small strains, the
linear differential operator L is defined as,
2
4
3
5
o
ox
00 oy
o
oz
0
L T ¼
o
oy
o
ox
o
oz
0
0
0
ð 3 : 43 Þ
00 oz
o
oy
o
ox
0
Thus, using Eqs. ( 3.41 ) and ( 3.43 ) it is possible to present the first term of
Eq. ( 3.40 ) as,
Search WWH ::




Custom Search