Biomedical Engineering Reference
In-Depth Information
46. T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, and T. Someya, “Ultral exible organic
i eld-ef ect transistors embedded at a neutral strain position,” Applied Physics
Letters , vol. 87, 2005, p. 173502.
47. C. Yang, J. Yoon, S.H. Kim, K. Hong, D.S. Chung, K. Heo, C.E. Park, and
M. Ree, “Bending-stress-driven phase transitions in pentacene thin i lms for
l exible organic i eld-ef ect transistors,” Applied Physics Letters , vol. 92, 2008,
p. 243305.
48. M. Kanari, M. Kunimoto, T. Wakamatsu, and I. Ihara, “Critical bending
radius and electrical behaviors of organic i eld ef ect transistors under elas-
toplastic bending strain,” h in Solid Films , vol. 518, 2010, pp. 2764-2768.
49. G. Shekhawat, S.-H. Tark, and V.P. Dravid, “MOSFET-Embedded
Microcantilevers for Measuring Del ection in Biomolecular Sensors,”
Science , vol. 311, 2006, pp. 1592-1595.
50.
S.-hyun Tark, A. Srivastava, S. Chou, and G. Shekhawat,
“Nanomechanoelectronic signal transduction scheme with metal-oxide-
semiconductor i eld-ef ect transistor-embedded microcantilevers,” Applied
Physics Letters , vol. 94, 2009, p. 104101.
51.
R. E. Newnham, D. P. Skinner, L. E. Cross, “Connectivity and piezeoelectric-
pyroelectric composites,” Material Res. Bull., Vol.13, pp.525-536 (1978).
52.
R. E. Newnham, Composite electro ceramics,” Compos. Electro. Ceram.
Vol.68, pp. 1-32 (1986).
53.
A. Safari, “Development of piezoelectric composites for transducers,” J .Phys.
iii France. Vol.4, pp. 1129-1149 (1994).
54.
H. C. Chiamori, J. W. Brwon, E. V. Adhiprakasha, E. T. Hantsoo, J. B.
Straalsund, N. A. Melosh, B. L. Pruitt, “Suspension of nanoparticles in SU-8
and characterization of nanocomposite polymers,” ENS 2005, France, Paris.
55.
S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, “Conductive SU8 photoresist
for microfabrication”, Adv.Funct.Mater. , Vol. 15, pp. 1511-1516, (2005).
56.
M. Sutter, O. Ergeneman, J. Zurcher, C. Moitzi, S. Pane, T. Rudin, S. E.
Pratsinis, B. J. Nelson, C. Hierold, “A photopatternable superparamagnetic
nanocomposite: Material characterization and fabrication of microstruc-
tures”, Sens. Actuators, B. ,vol.156, pp.433-443 (2011).
57.
H. Gullapalli, V. S. M. Vemuru, A. Kumar, A. B. Mendez, R. Vajtai, M.
Terrones, S. Nagarajaiah, P. M. Ajayan, “Flexible piezoelectric ZnO-paper
nanocomposite strain sensor,” Small. , Vol. 6, pp.1641-1646, (2010).
58.
K I Park, M Lee, Y Liu, S Moon, G T Hwang, G Zhu, J E Kim, S O Kim, D K
Kim, Z L Wang and K J Lee, “Nanocomposite generators: l exible nanocom-
posite generator made of BaTiO 3 nanoparticles and graphitic carbons,” Adv.
Mater. ,Vol.24,pp.2999-3004,(2012).
59.
S. P. Beeby, M. J. Tudor, N. M. White, “Energy harvesting vibration sources for
microsystems applications,” Meas. Scie. Technol. , Vol.17, pp. 175-195 (2006).
60.
J. Q. Liu, H. B. Fang , Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, B. C.
Cai, “A MEMS-based piezoelectric power generator array for vibration energy
harvesting,” Microelectr. J. , Vol.39, pp. 802-806, (2008).
Search WWH ::




Custom Search