Biomedical Engineering Reference
In-Depth Information
using microcantilevers functionalized with 4-MBA for detection of TNT and
RDX in ambient conditions could support their candidature for detection of
explosive vapours in ambient. Moreover, development of some orthogonal
approaches that could be employed along with these receptor based micro-
cantilever explosive detection schemes is also an on-going research.
References
1. J. W Gardner and V.K. Varadan, Osama O. Awadelkarim, Microsensors,
MEMS and Smart devices , John Wiley & Sons, 2002.
2. Bhushan, Bharat. Springer handbook of nanotechnology . Springer, 2010.
3. S.P. Mohanty and E. Kougianos, “Biosensors : A Tutorial Review,” IEEE
Potentials , 2006, pp. 1-16.
4. King W P et.al., “Design of atomic force microscope cantilevers for com-
bined thermomechanical writing and thermal reading in array operation,” J.
Microelectromech. Syst. , vol. 11, p. 765-74.
5. Berger, R., Lang, H. P., Gerber, C., Gimzewski, J. K., Fabian, J. H., Scandella,
L., ... & Güntherodt, H. J. (1998). Micromechanical thermogravimetry.
Chemical Physics Letters , 294(4), 363-369
6. S.-hyung S. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-
chemo-mechanical sensor array platform for high-throughput chemical
analysis,” Sensors And Actuators , vol. 119, 2006, pp. 466-474.
7. Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer,
M. Hegner, and C. Gerber, “Label-free protein assay based on a nanome-
chanical cantilever array,” vol. 14, 2003, pp. 86-90.
8. L.G. Carrascosa and M. Moreno, “Nanomechanical biosensors : a new sens-
ing tool,” Trends Anal. Chem. , vol. 25, 2005, p. 196-206.
9. C. Ziegler, “Cantilever-based biosensors,” Analytical and Bioanalytical
Chemistry , vol. 379, 2004, pp. 946-959.
10.
J. Fritz, M.K. Baller, H.P. Lang, and H. Rothuizen, “Translating Biomolecular
Recognition into Nanomechanics,” Science , vol. 288, 2000, pp. 316-318.
11.
J.W. Gardner, JehudaYinon, ed., Electronic Noses & Sensors for the Detection
of Explosives , NATO Science series, .
12.
H.-peter Lang, M. Hegner, and C. Gerber, “Nanomechanical Cantilever
Array Sensors,” Handbook of Nanotechnology , Springer, , pp. 443-459.
13.
M.A. and B.A. Greve A, Keller S, Vig A L, Kristensen A, Larsson D, Yvind K,
Hvam J M, Cerruti M, “h ermoplastic microcantilevers fabricated by nano-
imprint lithography,” J. Micromech. Microeng. , vol. 20, 2010, p. 015009.
14.
L.Y. and X.Y. Katragadda R, Wang Z, Khalid W, “Parylene cantilevers inte-
grated with polycrystalline silicon piezoresistors for surface stress sensing,”
Appl. Phys. Lett. , vol. 91, 2007, p. 083505.
15.
A. Boisen, S. Dohn, S.S. Keller, S. Schmid, and M. Tenje, “Cantilever-like
micromechanical sensors,” Rep. Prog. Phys. , vol. 74, 2011, pp. 1-30.
Search WWH ::




Custom Search