Chemistry Reference
In-Depth Information
emission intensity following irradiation of the photosensitiser (and generation of singlet oxygen). It is noteworthy that irra-
diation did not induce apoptosis or necrosis, suggesting that the rapid reactivity of the Eu III complex may actually inhibit
reaction of singlet oxygen with other cell components [77].
12.4
ConCLUsions
Luminescent lanthanide complexes are applicable to a variety of optical imaging applications. The numerous opportunities
afforded through targeted ligand design have demonstrated the wide utility of these complexes from luminescent labels of
tissue to intracellular probes with defined localisation profiles. Perhaps the most intriguing attributes are revealed in the
photophysically responsive nature of Ln III complexes (particularly the emission of Eu III ) toward analytes of biological signif-
icance. Because the long-lived luminescent lifetimes are ideal for time-resolved luminescence microscopy, the application
of lifetime imaging will be invaluable in a noninvasive biological context; combination of these optical attributes with related
gd III -based contrast agents clearly has implications to dual modality imaging assessments [78]. All of the examples above
have focused on the imaging ability of visibly emitting Ln III ions, but the future development of probes for deeper tissue
imaging requires consideration of the NIR-emitting lanthanides. Because Nd III complexes are extremely sensitive to excited
state quenching from C-H, as well as O-H and N-H oscillators, Yb III might represent the greatest opportunity for development
in this area: Engineering good emissivity from such complexes is an active area of research. Maximising the efficiency of
energy transfer is a clear objective, whilst inducing fast radiative deactivation of Yb III can yield brightly emissive complexes;
elucidating the role of the radiative lifetime may well illuminate further developments in this area [79].
reFerenCes
[1] J. B. Pawlet (Ed.), Handbook of Biological Confocal Microscopy , Springer, New York (2006).
[2] J. R. Lakowicz, Principles of Fluorescence Spectroscopy , Springer, New York (2006).
[3] V. Fernández-Moreira, F. L. Thorp-greenwood and M. P. Coogan, Chem. Commun. 46 , 186-202 (2010).
[4] Q. Zhao, C. H. Huang and F. Y. Li, Chem. Soc. Rev. 40 , 2508-2524 (2011).
[5] J-C. g. Bunzl, Chem. Rev. 110 , 2729-2755 (2010).
[6] k. k. W. Lo, S. P. Y. Li and k. Y. Zhang, New J. Chem. 35 , 265-287 (2011).
[7] M. X. Yu, Q. Zhao, L. X. Shi, F. Y. Li, Z. g. Zhou, H. Yang, T. Yi and C. H. Huang, Chem . Commun. 2115-2117 (2008).
[8] k. Y. Zhang and k. k-W. Lo, Inorg. Chem. 48 , 6011-6025 (2009).
[9] J. S.-Y. Lau, P.-k. Lee, k. H.-k. Tsang, C. H.-C. Ng, Y.-W. Lam, S.-H. Cheng and k. k.-W. Lo, Inorg. Chem. 48 , 708-718 (2009).
[10] k. Y. Zhang, S. P.-Y. Li, N. Zhu, I. W.-S. Or, M. S.-H. Cheung, Y.-W. Lam and k. k.-W. Lo, Inorg. Chem. 49 , 2530-2540 (2010).
[11] L. Murphy, A. Congreve, L.-O. Pålsson and J. A. g. Williams, Chem. Commun. 46 , 8743-8745 (2010).
[12] S. k. Leung, k. Y. kwok, k. Y. Zhang and k. k. W. Lo, Inorg. Chem. 49 , 4984-4995 (2010).
[13] k. A. Stephenson, S. R. Banerjee, T. Besenger, O. O. Sogbein, M. k. Levadala, N. McFarlane, J. A. Lemon, d. R. Boreham,
k. P. Maresca, J. d. Brennan, J. W. Babich, J. Zubieta and J. F. Valliant, J. Am. Chem. Soc. 126 , 8598-8599 (2004).
[14] N. Viola-Villegas, A. E. Rabideau, M. Bartholoma, J. Zubieta and R. doyle, J. Med. Chem. 52 , 5253-5261 ( 2009).
[15] S. R. Banerjee, J. W. Babich and J. Zubieta, Chem . Commun. 1784-1786 (2005).
[16] T. Esteves, C. Xavier, S. gama, F. Mendes, P. d. Raposinho, F. Marques, A. Paulo, J. C. Pessoa, J. Rino, g. Viola and I. Santos,
Org. Biomol. Chem. 8 , 4104-4116 (2010).
[17] d. J. Stufkens and A. Vlcek, Jr, Coord. Chem. Rev. 177 , 127-179 (1998).
[18] A. J. Amoroso, M. P. Coogan, J. E. dunne, V. Fernández- Moreira, J. B. Hess, A. J. Hayes, d. Lloyd, C. Millet, S. J. A. Pope and
C. Williams, Chem . Commun. 3066-3068 (2007).
[19] R. g. Balasingham, M. P. Coogan and F. L. Thorp-greenwood, Dalton Trans. 2011, 40 , 11663-11674 (2011)
[20] A. J. Amoroso,R. J. Arthur, M. P. Coogan, J. B. Court, V. Fernandez-Moreira, A. J. Hayes, d. Lloyd, C. Millet, S. J. A. Pope and
C. Williams, New J. Chem. 32 , 1097-1102 (2008).
[21] k. k.-W. Lo, M.-W. Louie, k.-S. Sze and J. S.-Y. Lau, Inorg. Chem. 47 , 602-611 (2008).
[22] V. Fernández-Moreira, F. L. Thorp-greenwood, A. J. Amoroso, J. Cable, J. B. Court, V. gray, A. J. Hayes, R. L. Jenkins,
B. M. kariuki, d. Lloyd, C. O. Millet, C. Ff. Williams and M. P. Coogan, Org. Biomol. Chem. 8 , 3888-3901 (2010).
[23] E. Ferri, d. donghi, M. Panigati, g. Prencipe, L. d'Alfonso, I. Zanoni, C. Baldoli, S. Maiorana, g. d'Alfonso and E. Licandro,
Chem. Commun. 46 , 6255-6257 (2010).
Search WWH ::




Custom Search