Chemistry Reference
In-Depth Information
32. N. Lesh, M. Mitzenmacher, S. Whitesides, A complete and effective move set for simplified
protein folding. Proceedings of the 7th annual int'l conference on research in computational
molecular biology (RECOMB) (2003), p. 188
33. F. Liang, W.H. Wong, Evolutionary Monte Carlo for protein folding simulations. J. Chem.
Phys. 115 , 3374 (2001)
34. J. Zhang, S.C. Kou, J.S. Liu, Biopolymer structure simulation and optimization via fragment
regrowth Monte Carlo. J. Chem. Phys. 126 , 225101 (2007)
35. X. Zhao, Advances on protein folding simulations based on the lattice HP models with natural
computing. Applied Soft Computing 8 , 1029 (2008)
36. K. Yue, K.A. Dill, Sequence-structure relationships in proteins and copolymers. Phys. Rev. E
48 , 2267 (1993)
37. R. Backofen, S. Will, A constraint-based approach to fast and exact structure prediction in
three dimensional protein models. Constraints 11 , 5 (2006)
38. Y. Iba, G. Chikenji, M. Kikuchi, Simulation of lattice polymers with multi-self-overlap
ensemble. J. Phys. Soc. Jpn. 67 , 3327 (1998); Multi-self-overlap ensemble for protein folding:
ground state search and thermodynamics. Phys. Rev. Lett. 83 , 1886 (1999)
39. M. Bachmann, W. Janke, Multicanonical chain-growth algorithm. Phys. Rev. Lett. 91 , 208105
(2003); Thermodynamics of lattice heteropolymers. J. Chem. Phys. 120 , 6779 (2004)
40. T. Prellberg, J. Krawczyk, Flat histogram version of the pruned and enriched
Rosenbluth method. Phys. Rev. Lett. 92 , 120602(2004); T. Prellberg, J. Krawczyk,
A. Rechnitzer, Polymer simulations with a flat histogram stochastic growth
algorithm. In Computer Simulation Studies in Condensed-Matter Physics XVII , ed. by
D.P. Landau, S.P. Lewis, H.-B. Schüttler. Proceedings of the 17th Workshop on Recent
Developments in Computer Simulation Studies in Condensed Matter Physics (Springer,
Berlin Heidelberg New York, NY, 2006), pp. 122-135; cond-mat/0402549
41. S.C. Kou, J.Oh, W.H. Wong, A study of density of states and ground states in hydrophobic-
hydrophilic protein folding models by equi-energy sampling. J. Chem. Phys. 124 , 244903
(2006)
42. F. Wang, D.P. Landau, Efficient, multiple-range random walk algorithm to calculate the den-
sity of states. Phys. Rev. Lett. 86 , 2050 (2001); Determining the density of states for classical
statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64 ,
056101 (2001); Determining the density of states for classical statistical models by a flat-
histogram random walk. Comput. Phys. Commun. 147 , 674 (2002)
43. T. Wüst, D.P. Landau, The HP model of protein folding: a challenging testing ground for
Wang-Landau sampling. Comput. Phys. Commun. 179 , 124 (2008)
44. T. Wüst, D.P. Landau, Versatile approach to access the low temperature thermodynamics of
lattice polymers and proteins. Phys. Rev. Lett. 102 , 178101 (2009)
45. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics , 2nd edn.
(Cambridge University Press, Cambridge, MA, 2005)
46. J.M. Deutsch, Long range moves for high density polymer simulations. J. Chem. Phys. 106 ,
8849 (1997)
47. C. Gervais, T. Wüst, D.P. Landau, Y. Xu, Application of the Wang-Landau algorithm to the
dimerization of glycophorin A. J. Chem. Phys. 130 , 215106 (2009)
48. B. Berg, T. Neuhaus, Multicanonical algorithms for first order phase transitions. Phys. Lett.
B 267 , 249 (1991); Multicanonical ensemble: a new approach to simulate first-order phase
transitions, Phys. Rev. Lett. 68 , 9 (1992)
49. A.D. Sokal in Monte Carlo and Molecular Dynamics Simulations in Polymer Science , ed. by
K. Binder (Oxford University Press, Oxford, 1995), p. 47
50. R. Fraser, J.I. Glasgow, A demonstration of clustering in protein contact maps for Alpha Helix
Pairs. In ICANNGA , vol. 1, (2007), p. 758
51. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics:
nanotechnology through biology. Nature Materials 2 , 577 (2003)
Search WWH ::




Custom Search