Chemistry Reference
In-Depth Information
7. S.S. Davis, L. Illum, Polymeric microspheres as drug carriers. Biomaterials 9 , 111 (1988)
8. B. Berger, T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP) model is NP-
complete. J. Comp. Biol. 5 , 27 (1998)
9. P. Crescenzi et al., On the complexity of protein folding. J. Comp. Biol. 5 , 409 (1998)
10. C. Branden, J. Tooze, Introduction to Protein Structure (Garland, New York, NY, 1991)
11. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the
Cell , 3rd edn. (Garland, New York, NY, 1994), pp. 90-93
12. W. Kauzmann, Some factors in the interpretation of protein denaturation. Adv. Protein Chem.
14 , 1 (1959)
13. K.A. Dill, The meaning of hydrophobicity. Science 250 , 297 (1990)
14. K.A. Dill, Theory for the folding and stability of globular proteins, Biochemistry 24 , 1501
(1985); K.F. Lau, K.A. Dill, A lattice statistical mechanics model of the conformational and
sequence spaces of protein. Macromolecules 22 , 3986 (1989)
15. R. Unger, J. Moult, Genetic algorithms for protein folding simulations, J. Mol. Biol. 231 ,
75 (1993); J.T. Pedersen, J. Moult, Genetic algorithms for protein structure prediction. Curr.
Opin. Struct. Biol. 6 , 227 (1996)
16. R. König, T. Dandekar, Improving genetic algorithms for protein folding simulations by sys-
tematic crossover. Biosystems 50 , 17 (1999)
17. R. Ramakrishnan, B. Ramachandran, J.F. Pekny, A dynamic Monte Carlo algorithm for explo-
ration of dense conformational spaces in heteropolymers. J. Chem. Phys. 106 , 2418 (1997)
18. K. Yue, K.A. Dill, Forces of tertiary structural organization in globular proteins. Proc. Natl.
Acad. Sci. USA 92 , 146 (1995)
19. K. Yue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I. Shakhnovich, K.A. Dill, A test of lattice
protein folding algorithms, Proc. Natl. Acad. Sci. USA 92 , 325 (1995)
20. T.C. Beutler, K.A. Dill, A fast conformational search strategy for finding low energy struc-
tures of model proteins. Protein Sci. 5 , 2037 (1996)
21. E.E. Lattman, K.M. Fiebig, K.A. Dill, Modeling compact denatured states of proteins. Bio-
chemistry 33 , 6158 (1994)
22. K.A. Dill et al., Principles of protein folding - A perspective from simple exact models,
Protein Sci. 4 , 561 (1995); K.A. Dill, Polymer principles and protein folding. Protein Sci. 8 ,
1166 (1999)
23. A. Sali, E. Shakhnovich, M. Karplus, How does a protein fold?, Nature 369 , 248 (1994);
Kinetics of protein folding. A lattice model study of the requirements for folding to the native
state. J. Mol. Biol. 235 , 1614 (1994)
24. U.H.E. Hansmann, Y. Okamoto, New Monte Carlo algorithms for protein folding. Curr. Opin.
Struct. Biol. 9 , 177 (1999)
25. N. Metropolis et al., Equation of state calculations by fast computing machines. J. Chem.
Phys. 21 , 1087(1953)
26. G.H. Paine, H.A. Scheraga, Prediction of the native conformation of a polypeptide by a sta-
tistical mechanical procedure. I. Backbone structure of enkephalin. Biopolymers 24 , 1391
(1985)
27. Z.Q. Li, H.A. Scheraga, Monte-Carlo-minimization approach to the multiple-minima problem
in protein folding. Proc. Natl. Acad. Sci. USA 84 , 6611 (1987)
28. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220 ,
671 (1983)
29. P. Grassberger, Pruned-enriched Rosenbluth method: Simulations of
ϑ
polymers of chain
length up to 1 000 000. Phys. Rev. E 56 , 3682 (1997)
30. H. Frauenkron et al., New Monte Carlo algorithm for protein folding. Phys. Rev. Lett. 80 ,
3149 (1998); U. Bastolla et al., Testing a new Monte Carlo algorithm for protein folding.
Proteins 32 , 52 (1998)
31. H.-P. Hsu et al., Growth algorithms for lattice heteropolymers at low temperatures. J. Chem.
Phys. 118 , 444 (2003); H.-P. Hsu et al., Growth-based optimization algorithm for lattice het-
eropolymers. Phys. Rev. E 68 , 021113 (2003)
Search WWH ::




Custom Search