Chemistry Reference
In-Depth Information
Morgan, T.P., M. Grosell, R.C. Playle, et  al. 2004. The time course of silver accumulation
in rainbow trout during static exposure to silver nitrate: Physiological regulation or an
artifact of the exposure conditions? Aquat. Toxicol . 66:55-72.
Morgan, T.P., C.M. Guadagnolo, M. Grosell, et  al. 2005. Effects of water hardness on the
physiological responses to chronic waterborne silver exposure in early life stages of
rainbow trout ( Oncorhynchus mykiss ). Aquat. Toxicol . 74:333-350.
Morgan, T.P., and C.M. Wood. 2004. A relationship between gill silver accumulation and acute
silver toxicity in the freshwater rainbow trout: Support for the acute silver biotic ligand
model. Environ. Toxicol. Chem . 23:1261-1267.
Nadella, S.R., J.L. Fitzpatrick, N. Franklin, et al. 2009. Toxicity of dissolved Cu, Zn, Ni and
Cd to developing embryos of the blue mussel ( Mytilus trossolus ) and the protective
effect of dissolved organic carbon. Comp. Biochem. Physiol. C Toxicol. Pharmacol .
149:340-348.
Natale, O.E., C.E. Gomez, and M.V. Leis. 2007. Application of the biotic ligand model for
regulatory purposes to selected rivers in Argentina with extreme water-quality charac-
teristics. Integr. Environ. Assess. Manag . 3:517-528.
Ng, T.Y., M.J. Chowdhury, and C.M. Wood. 2010. Can the biotic ligand model predict Cu tox-
icity across a range of pHs in softwater-acclimated rainbow trout? Environ. Sci. Technol .
44:6263-6268.
Nichols, J.W., S. Brown, C.M. Wood, et al. 2006. Influence of salinity and organic matter on
silver accumulation in Gulf toadfish ( Opsanus beta ). Aquat. Toxicol . 78:253-261.
Niyogi, S., R. Kent, and C.M. Wood. 2008. Effects of water chemistry variables on gill binding
and acute toxicity of cadmium in rainbow trout ( Oncorhynchus mykiss ): A biotic ligand
model (BLM) approach. Comp. Biochem. Physiol. C Toxicol. Pharmacol . 148:305-314.
Niyogi, S., and C.M. Wood. 2004. Biotic ligand model, a flexible tool for developing site-
specific water quality guidelines for metals. Environ. Sci. Technol . 38:6177-6192.
Ore, S., J. Mertens, K.K. Brandt, et al. 2010. Copper toxicity to bioluminescent Nitrosomonas
europaea in soil is explained by the free metal ion activity in pore water. Environ. Sci.
Technol . 44:9201-9206.
Paganini, C.L., and A. Bianchini. 2009. Copper accumulation and toxicity in isolated cells
from gills and hepatopancreas of the blue crab ( Callinectes sapidus ). Environ. Toxicol.
Chem . 28:1200-1205.
Paquin, P.R., J.M. Gorsuch, S. Apte, G.E. Bartley, K.C. Bowles, P.G.C. Campbell, C.G. Delos,
D.M. Di Toro, R.L. Dwyer, F. Galvez, R.W. Gensemer, G.G. Goss, C. Hogstand,
C.R. Janssen, J.C. McGeer, R.B. Naddy, R.C. Playle, R.C. Santore, U. Schneider,
W.A. Stubblefield, C.M. Wood, and K.B. Wu. 2002. The biotic ligand model: A histori-
cal overview. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol . 133:3-35.
Pedroso, M.S., J.G. Bersano, and A. Bianchini. 2007. Acute silver toxicity in the euryha-
line copepod Acartia tonsa : Influence of salinity and food. Environ. Toxicol. Chem .
26:2158-2165.
Peters, A., G. Merrington, K. de Schamphelaere, et  al. 2010. Regulatory consideration of
bioavailability for metals: Simplification of input parameters for the chronic copper
biotic ligand model. Integr. Environ. Assess. Manag . 7(3):437-444.
Pinho, G.L., and A. Bianchini. 2010. Acute copper toxicity in the euryhaline copepod Acartia
tonsa : Implications for the development of an estuarine and marine biotic ligand model.
Environ. Toxicol. Chem . 29:1834-1840.
Playle, R.C. 2004. Using multiple metal-gill binding models and the toxic unit concept to help
reconcile multiple-metal toxicity results. Aquat. Toxicol . 67:359-370.
Reiley, M.C. 2007. Science, policy, and trends of metals risk assessment at EPA: How
understanding metals bioavailability has changed metals risk assessment at US EPA.
Aquat. Toxicol . 84:292-298.
Search WWH ::




Custom Search