Chemistry Reference
In-Depth Information
Lock, K., K.A. De Schamphelaere, S. Becaus, et  al. 2006. Development and validation of
an acute biotic ligand model (BLM) predicting cobalt toxicity in soil to the potworm
Enchytraeus albidus . Soil Biology and Biochemistry 38:1924-1932.
Lock, K., K.A. De Schamphelaere, S. Becaus, et al. 2007. Development and validation of a
terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley
( Hordeum vulgare ). Environ. Pollut . 147:626-633.
Lock, K., H. Van Eeckhout, K.A. De Schamphelaere, et al. 2007. Development of a biotic ligand
model (BLM) predicting nickel toxicity to barley ( Hordeum vulgare ). Chemosphere
66:1346-1352.
Lopez-Chuken, U.J., and S.D. Young. 2010. Modelling sulphate-enhanced cadmium uptake
by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity.
J. Environ. Sci. (China) 22:1080-1085.
Lopez-Chuken, U.J., S.D. Young, and J.L. Guzman-Mar. 2010. Evaluating a “biotic ligand
model” applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient
solution at constant Cd2+ activity. Environ. Technol . 31:307-318.
Luo, J., H. Zhang, F.J. Zhao, et al. 2010. Distinguishing diffusional and plant control of Cd and
Ni uptake by hyperaccumulator and nonhyperaccumulator plants. Environ. Sci. Technol .
44:6636-6641.
Luo, X.S., L.Z. Li, and D.M. Zhou. 2007. Development of a terrestrial biotic ligand model
(t-BLM): Alleviation of the rhizotoxicity of copper to wheat by magnesium. Shengtai
Duli Xuebao 2:41-48.
Luo, X.S., L.Z. Li, and D.M. Zhou. 2008. Effect of cations on copper toxicity to wheat root:
implications for the biotic ligand model. Chemosphere 73:401-406.
Mager, E.M., K.V. Brix, R.M. Gerdes, et al. 2010. Effects of water chemistry on the chronic
toxicity of lead to the cladoceran, Ceriodaphnia dubia . Ecotoxicol. Environ. Saf .
74(3):238-243.
Mager, E.M., A.J. Esbaugh, K.V. Brix, et al. 2011. Influences of water chemistry on the acute
toxicity of lead to Pimephales promelas and Ceriodaphnia dubia . Comp. Biochem.
Physiol. C Toxicol. Pharmacol . 153:82-90.
March, F.A., F.J. Dwyer, T. Augspurger, et  al. 2007. An evaluation of freshwater mussel
toxicity data in the derivation of water quality guidance and standards for copper.
Environ. Toxicol. Chem . 26: 2066-2074.
Markich, S.J., A.R. King, and S.P. Wilson. 2006. Non-effect of water hardness on the accumu-
lation and toxicity of copper in a freshwater macrophyte ( Ceratophyllum demersum ):
How useful are hardness-modified copper guidelines for protecting freshwater biota?
Chemosphere 65:1791-1800.
Martins Cde, M., I.F. Barcarolli, E.J. de Menezes, et al. 2011. Acute toxicity, accumulation and
tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different
salinities: In vivo and in vitro studies. Aquat. Toxicol . 101:88-99.
Mertens, J., F. Degryse, D. Springael, et  al. 2007. Zinc toxicity to nitrification in soil and
soilless culture can be predicted with the same biotic ligand model. Environ. Sci.
Technol . 41:2992-2997.
Meyer, J.S., and W.J. Adams. 2010. Relationship between biotic ligand model-based water
quality criteria and avoidance and olfactory responses to copper by fish. Environ.
Toxicol. Chem . 29:2096-2103.
Meyer, J.S., C.J. Boese, and J.M. Morris. 2007. Use of the biotic ligand model to predict
pulse-exposure toxicity of copper to fathead minnows ( Pimephales promelas ). Aquat.
Toxicol . 84:268-278.
Miao, A.J., and W.X. Wang. 2007. Predicting copper toxicity with its intracellular or subcel-
lular concentration and the thiol synthesis in a marine diatom. Environ. Sci. Technol .
41:1777-1782.
Search WWH ::




Custom Search