Chemistry Reference
In-Depth Information
Gandhi, N., M.L. Diamond, D. van de Meent, et al. 2010. New method for calculating com-
parative toxicity potential of cationic metals in freshwater: Application to copper, nickel,
and zinc. Environ. Sci. Technol. 44:5195-5201.
Gillis, P.L., J.C. McGeer, G.L. Mackie, et  al. 2010. The effect of natural dissolved organic
carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ.
Toxicol. Chem . 29:2519-2528.
Gillis, P.L., R.J. Mitchell, A.N. Schwalb, et al. 2008. Sensitivity of the glochidia (larvae) of
freshwater mussels to copper: Assessing the effect of water hardness and dissolved
organic carbon on the sensitivity of endangered species. Aquat. Toxicol . 88:137-145.
Glover, C.N., and C.M. Wood. 2004. Physiological interactions of silver and humic sub-
stances in Daphnia magna : Effects on reproduction and silver accumulation fol-
lowing an acute silver challenge. Comp. Biochem. Physiol. C Toxicol. Pharmacol .
139:273-280.
Gorski, P.R., D.E. Armstrong, J.P. Hurley, et al. 2006. Speciation of aqueous methylmercury
influences uptake by a freshwater alga ( Selenastrum capricornutum ). Environ. Toxicol.
Chem . 25:534-540.
Gravenmier, J.J., D.W. Johnston, R.C. Santore, et  al. 2005. Acute toxicity of copper to the
threespine stickleback, Gasterosteus aculeatus . Environ. Toxicol . 20:150-159.
Hassler, C.S., R. Behra, and K.J. Wilkinson. 2005. Impact of zinc acclimation on bioaccumu-
lation and homeostasis in Chlorella kesslerii . Aquat. Toxicol . 74:139-149.
Hassler, C.S., R.D. Chafin, M.B. Klinger, et al. 2007. Application of the biotic ligand model
to explain potassium interaction with thallium uptake and toxicity to plankton. Environ.
Toxicol. Chem . 26:1139-1145.
Hassler, C.S., V.I. Slaveykova, and K.J. Wilkinson. 2004. Some fundamental (and often
overlooked) considerations underlying the free ion activity and biotic ligand models.
Environ. Toxicol. Chem . 23:283-291.
Hatano, A., and R. Shoji. 2008. Toxicity of copper and cadmium in combinations to duckweed
analyzed by the biotic ligand model. Environ. Toxicol . 23:372-378.
Hatano, A., and R. Shoji. 2010. A new model for predicting time course toxicity of heavy
metals based on Biotic Ligand Model (BLM). Comp. Biochem. Physiol. C Toxicol.
Pharmacol . 151:25-32.
Hayashi, T.I., and N. Kashiwagi. 2010. A Bayesian approach to probabilistic ecological risk
assessment: Risk comparison of nine toxic substances in Tokyo surface waters. Environ.
Sci. Pollut. Res. Int . 18(3):365-375.
Heijerick, D.G., B.T. Bossuyt, K.A. De Schamphelaere, et al. 2005. Effect of varying physi-
cochemistry of European surface waters on the copper toxicity to the green alga
Pseudokirchneriella subcapitata . Ecotoxicol . 14:661-670.
Heijerick, D.G., K.A. De Schamphelaere, P.A. Van Sprang, et  al. 2005. Development of a
chronic zinc biotic ligand model for Daphnia magna . Ecotoxicol. Environ. Saf . 62:1-10.
Hiriart-Baer, V.P., C. Fortin, D.Y. Lee, et al. 2006. Toxicity of silver to two freshwater algae,
Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata , grown under con-
tinuous culture conditions: Influence of thiosulphate. Aquat .Toxicol . 78:136-148.
Hoang, T.C., J.R. Tomasso, and S.J. Klaine. 2004. Influence of water quality and age on nickel
toxicity to fathead minnows ( Pimephales promelas ). Environ. Toxicol. Chem . 23:86-92.
Hoang, T.C., J.R. Tomasso, and S.J. Klaine. 2007. An integrated model describing the toxic
responses of Daphnia magna to pulsed exposures of three metals. Environ. Toxicol.
Chem . 26:132-138.
Jou, L.J., W.Y. Chen, and C.M. Liao. 2009. Online detection of waterborne bioavailable
copper by valve daily rhythms in freshwater clam Corbicula fluminea. . Environ. Monit.
Assess . 155:257-272.
Kalis, E.J., E.J. Temminghoff, and L. Weng, et al. 2006. Effects of humic acid and competing
cations on metal uptake by Lolium perenne . Environ. Toxicol. Chem . 25:702-711.
Search WWH ::




Custom Search