Chemistry Reference
In-Depth Information
De Schamphelaere, K.A., and C.R. Janssen. 2004c. Effects of chronic dietary copper exposure
on growth and reproduction of Daphnia magna . Environ. Toxicol. Chem . 23:2038-2047.
De Schamphelaere, K.A., and C.R. Janssen. 2010. Cross-phylum extrapolation of the Daphnia
magna chronic biotic ligand model for zinc to the snail Lymnaea stagnalis and the roti-
fer Brachionus calyciflorus. . Sci.Total Environ . 408:5414-5422.
De Schamphelaere, K.A., S. Lofts, and C.R. Janssen. 2005. Bioavailability models for pre-
dicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface
waters. Environ. Toxicol. Chem . 24:1190-1197.
De Schamphelaere, K.A., J.L. Stauber, K.L. Wilde, et al. 2005. Toward a biotic ligand model
for freshwater green algae: Surface-bound and internal copper are better predic-
tors of toxicity than free Cu2+-ion activity when pH is varied. Environ. Sci. Technol.
39:2067-2072.
De Schamphelaere, K.A., F.M. Vasconcelos, F.M. Tack, et  al. 2004. Effect of dissolved
organic matter source on acute copper toxicity to Daphnia magna . Environ. Sci. Technol.
23:1248-1255.
Deforest, D.K., R.W. Gensemer, E.J. Van Genderen, et al. 2010. Protectiveness of water qual-
ity criteria for copper in Western United States waters relative to predicted olfactory
responses in juvenile Pacific salmon. Integr. Environ. Assess. Manag . 7(3):336-347.
Deleebeeck, N.M., K.A. De Schamphelaere, D.G. Heijerick, et al. 2008. The acute toxicity of
nickel to Daphnia magna : Predictive capacity of bioavailability models in artificial and
natural waters. Ecotoxicol. Environ. Saf . 70:67-78.
Deleebeeck, N.M., K.A. De Schamphelaere, and C.R. Janssen. 2008. A novel method for
predicting chronic nickel bioavailability and toxicity to Daphnia magna in artificial and
natural waters. Environ. Toxicol. Chem . 27:2097-2107.
Deleebeeck, N.M., K.A. De Schamphelaere, and C.R. Janssen. 2009. Effects of Mg(2+) and
H(+) on the toxicity of Ni(2+) to the unicellular green alga Pseudokirchneriella sub-
capitata : Model development and validation with surface waters. Sci. Total Environ .
407:1901-1914.
Di Toro, D.M., H.E. Allen, H.L. Bergman, J.S. Meyer, P.R. Paquin, and R.C. Santore. 2001.
Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol.
Chem. 20:2383-2396.
Di Toro, D.M., J.A. McGrath, D.J. Hansen, et  al. 2005. Predicting sediment metal toxicity
using a sediment biotic ligand model: Methodology and initial application. Environ.
Toxicol. Chem . 24:2410-2427.
Fortin, C., F.H. Denison, and J. Garnier-Laplace. 2007. Metal-phytoplankton interactions:
Modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake.
Environ. Toxicol. Chem . 26:242-248.
Fortin, C., L. Dutel, and J. Garnier-Laplace. 2004. Uranium complexation and uptake by a
green alga in relation to chemical speciation: The importance of the free uranyl ion.
Environ. Toxicol. Chem . 23:974-981.
Francois, L., C. Fortin, and P.G. Campbell. 2007. pH modulates transport rates of manganese
and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive
interactions: Implications for an algal BLM. Aquat. Toxicol . 84:123-132.
Franklin, N., G. McClelland, and C.M. Wood. 2005. A biotic ligand model approach to copper
toxicity in tropical freshwater zebrafish ( Danio rerio ). Canadian Technical Report of
Fisheries and Aquatic Sciences 2617, 34.
Franklin, N.M., C.N. Glover, J.A. Nicol, et al. 2005. Calcium/cadmium interactions at uptake
surfaces in rainbow trout: Waterborne versus dietary routes of exposure. Environ.
Toxicol. Chem . 24:2954-2964.
Galvez, F., N.M. Franklin, R.B.Tuttle, et al. 2007. Interactions of waterborne and dietary cad-
mium on the expression of calcium transporters in the gills of rainbow trout: Influence
of dietary calcium supplementation. Aquat. Toxicol . 84:208-214.
Search WWH ::




Custom Search