Biomedical Engineering Reference
In-Depth Information
33. Nguyen, H.D., Reddy, V.S., Brooks III, C.L. Deciphering the kinetic mechanism of sponta-
neous self-assembly of icosahedral capsids. Nano Lett. 7 (2), 338-344 (2007)
34. Workum, K.V., Douglas, J.F.: Symmetry, equivalence, and molecular self-assembly. Phys.
Rev. E 73 , 031502 (2006)
35. Chen, T., Zhang, Z., Glotzer, S.C.: A precise packing sequence for self-assembled convex
structures. Proc. Natl. Acad. Sci. USA 104 (3), 717-722 (2007)
36. Mannige, R.V., Brooks III, C.L.: Geometric considerations in virus capsid size speci-
ficity,
auxiliary
requirements,
and
buckling.
Proc.
Natl.
Acad.
Sci.
USA
106 (21),
8531-8536 (2009)
37. Mannige, R.V., Brooks III, C.L.: Periodic table of virus capsids: implications for natural
selection and design. PLoS One 5 (3), e9423 (2010)
38. Twarock, R.: A tiling approach to virus capsid assembly explaining a structural puzzle in
virology. J. Theor. Biol. 226 (4), 477-482 (2004)
39. Twarock, R.: Mathematical virology: a novel approach to the structure and assembly of
viruses. Phil. Trans. R. Soc. A 364 , 3357-3373 (2006)
40. Mannige, R.V., Brooks III, C.L.: Tilable nature of virus capsids and the role of topological
constraints in natural capsid design. Phys. Rev. E 77 (5), 051902 (2008)
41. Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells.
Phys. Rev. E 68 , 051910-051919 (2003)
42. Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral
shells. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72 (5 Pt 1), 051923 (2005)
43. Zandi, R., Reguera, D.: Mechanical properties of viral capsids. Phys. Rev. E Stat. Nonlin.
Soft. Matter Phys. 72 , 021917 (2005)
44. Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral
symmetry in viruses. Proc. Natl. Acad. Sci. USA 101 (44), 15556-15560 (2004)
45. Bamford, D.H., Grimes, J.M., Stuart, D.I.: What does structure tell us about virus evolution?
Curr. Opin. Struct. Biol. 15 (6), 655-663 (2005)
46. Johnson, J.E., Speir, J.A.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol.
Biol. 269 (5), 665-75 (1997)
47. Dokland, T., McKenna, R., Ilag, L.L., Bowman, B.R., Incardona, N.L., Fane, B.A., Rossmann,
M.G.: Structure of a viral procapsid with molecular scaffolding. Nature 389 (6648), 308-313
(1997)
48. Douglas, T., Young, M.: Viruses: making friends with old foes. Science 312 (5775), 873-875
(2006)
49. Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Barr, E., Alvarez, F.B., Chiacchierini,
L.M., Jansen, K.U.: A controlled trial of a human papillomavirus type 16 vaccine. N. Engl.
J. Med. 347 (21), 1645-1651 (2002)
50. Shank-Retzlaff, M., Wang, F., Morley, T., Anderson, C., Hamm, M., Brown, M., Rowland, K.,
Pancari, G., Zorman, J., Lowe, R., Schultz, L., Teyral, J., Capen, R., Oswald, C.B., Wang, Y.,
Washabaugh, M., Jansen, K., Sitrin, R.: Correlation between mouse potency and in vitro
relative potency for human papillomavirus type 16 virus-like particles and gardasil vaccine
samples. Hum. Vaccin. 1 (5), 191-7 (2005)
51. Shi, L., Sings, H.L., Bryan, J.T., Wang, B., Wang, Y., Mach, H., Kosinski, M.,
Washabaugh, M.W., Sitrin, R., Barr, E.: Gardasil: prophylactic human papillomavirus vaccine
development-from bench top to bed-side. Clin. Pharmacol. Ther. 81 (2), 259-64 (2007)
52. Wales, D.J.: Closed-shell structures and the building game. Chem. Phys. Lett. 141 , 478-484
(1987)
53. Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell
assembly. Proc. Natl. Acad. Sci. USA. 91 , 7732-7736 (1994)
54. Zlotnick, A.: To build a virus capsid. An equilibrium model of the self assembly of polyhedral
protein complexes. J. Mol. Biol. 241 (1), 59-67 (1994)
55. Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids or other
spherical polymers. Biophys. J. 83 , 1217-1230 (2002)
Search WWH ::




Custom Search