Information Technology Reference
In-Depth Information
h 1 n
h 1 n
=
w i h
α i )
+
1
w i h
α i )
=
1
(1.208)
i =
i =
1
1
which completes the proof of Theorem 1.29.
Then we can investigate some desirable properties of the ATS-IFWA operator:
Theorem 1.30 (Xia et al. 2012c) If all
α i
(
i
=
1
,
2
,...,
n
)
are equal, i.e.,
α i
=
α = α ,
v α )
, for all i , then
1 2 ,...,α n ) = α
ATS
IFWA
(1.209)
Proof Let
α i
= α = α ,
v α )
,wehave
n
ATS
IFWA
1 2 ,...,α n ) =
ATS
IFWA
(α,α,...,α) =
w i α
i
=
1
h 1 n
, g 1 n
=
w i h
α )
w i g(
v
α )
i
=
1
i
=
1
h 1
α )) , g 1
=
(
h
(g(
v
α ))
= α
(1.210)
Theorem 1.31 (Xia et al. 2012c) Let
β i
= β i ,
v β i )(
i
=
1
,
2
,...,
n
)
be a collec-
tion of IFVs, if
μ α i
μ β i and v
v
β i , for all i , then
α i
ATS
IFWA
1 2 ,...,α n )
ATS
IFWA
1 2 ,...,β n )
(1.211)
Proof We have known that h
(
t
) = g(
1
t
)
, and g :
[
0
,
1
]→
0
,
1
]
is a strictly
decreasing function, then h
(
t
)
is a strictly increasing function. Since
μ α i
μ β i and
v
v
β i , then we have
h 1 n
α i
h 1 n
α i )
β i )
w i h
w i h
(1.212)
i
=
1
i
=
1
g 1 n
g 1 n
w i g(
v α i )
w i g(
v β i )
(1.213)
i
=
1
i
=
1
and thus,
S
(
ATS-IFWA
1 2 ,...,α n ))
S
(
ATS-IFWA
1 2 ,...,β n ))
(1.214)
which completes the proof.
Search WWH ::




Custom Search