Information Technology Reference
In-Depth Information
Table 1.12
Intuitionistic fuzzy decision matrix B
G 1
G 2
G 3
G 4
y 1
(
0
.
33
,
0
.
33
,
0
.
34
)
(
0
.
22
,
0
.
34
,
0
.
44
)
(
0
.
23
,
0
.
49
,
0
.
28
)
(
0
.
15
,
0
.
57
,
0
.
28
)
y 2
(
0
.
24
,
0
.
34
,
0
.
42
)
(
0
.
26
,
0
.
40
,
0
.
34
)
(
0
.
21
,
0
.
28
,
0
.
51
)
(
0
.
44
,
0
.
39
,
0
.
17
)
y 3
(
0
.
11
,
0
.
16
,
0
.
73
)
(
0
.
19
,
0
.
47
,
0
.
34
)
(
0
.
23
,
0
.
31
,
0
.
46
)
(
0
.
35
,
0
.
46
,
0
.
19
)
y 4
(
0
.
19
,
0
.
38
,
0
.
43
)
(
0
.
31
,
0
.
29
,
0
.
40
)
(
0
.
44
,
0
.
24
,
0
.
32
)
(
0
.
21
,
0
.
25
,
0
.
54
)
y 5
(
0
.
37
,
0
.
48
,
0
.
15
)
(
0
.
29
,
0
.
39
,
0
.
32
)
(
0
.
32
,
0
.
35
,
0
.
33
)
(
0
.
34
,
0
.
25
,
0
.
41
)
y 6
(
0
.
25
,
0
.
34
,
0
.
41
)
(
0
.
24
,
0
.
35
,
0
.
41
)
(
0
.
30
,
0
.
28
,
0
.
42
)
(
0
.
45
,
0
.
28
,
0
.
27
)
candidates. Project management is the application of knowledge, skills, tools, and
techniques to the implementation of project activities for the purpose of meeting
project requirements. The requirements of a project manager are not only morale,
but also proficiency in project management. Suppose that four attributes: (1) G 1 (self-
confidence); (2) G 2 (personality); (3) G 3 (past experience); and (4) G 4 (proficiency
in project management), are taken into consideration in the selection problem and
there exist six candidates y i
. Assume that the performance of
the alternative y i with respect to the attribute G j is measured by an IFV b ij
(
i
=
1
,
2
,...,
6
)
=
ij ,
v ij ij )
, and then we construct the intuitionistic fuzzy decision matrix B
=
(
b ij ) 6 × 4 (see Table 1.12 ) (Xia et al. 2012b).
To get the optimal alternative(s), the following steps are given (Xia et al. 2012b):
(
=
,
,
,
)
Step 1 Considering all the attributes G j
j
1
2
3
4
are the benefit attributes,
(
=
,
,...,
)
the performance values of the alternatives y i
i
1
2
6
do not need normal-
ization.
Step 2 Aggregate all the performance values r ij (
)
of the i th line, and get the overall performance value r i corresponding to the alter-
native y i by the GIFWBM (without of generalization, let p
i
=
1
,
2
,
3
,
4
;
j
=
1
,
2
,...,
6
=
q
=
r
=
1
)
:
r 1 = (
0
.
2061
,
0
.
4744
,
0
.
3195
),
r 2 = (
0
.
3156
,
0
.
3532
,
0
.
3312
)
r 3 = (
0
.
2583
,
0
.
3841
,
0
.
3576
),
r 4 = (
0
.
2975
,
0
.
2673
,
0
.
4352
)
r 5 = (
0
.
3270
,
0
.
3291
,
0
.
3439
),
r 6 = (
0
.
3435
,
0
.
2997
,
0
.
3568
)
Step 3 Calculate the scores of all the alternatives:
S
(
r 1 ) =−
0
.
2683
,
S
(
r 2 ) =−
0
.
0376
,
S
(
r 3 ) =−
0
.
1259
S
(
r 4 ) =
0
.
0303
,
S
(
r 5 ) =−
0
.
0021
,
S
(
r 6 ) =
0
.
0439
Since
S
(
r 6 )>
S
(
r 4 )>
S
(
r 5 )>
S
(
r 2 )>
S
(
r 3 )>
S
(
r 1 )
then by Xu and Yager (2006)'s ranking method, we get the ranking of the IFVs:
r 6 >
r 4 >
r 5 >
r 2 >
r 3 >
r 1
 
Search WWH ::




Custom Search