Information Technology Reference
In-Depth Information
λ(γ
) λ 1 (
) λ
) λ 1
) λ
1
)(
1
+
1
)
x
+ λ(
1
x
1
+
1
)
x
1
)(
1
x
) =
h
(
x
(
) λ 2
1
+
1
)
x
) λ +
1
)(
1
x
(
) λ λ(γ
) λ 1
) λ (
) λ 1
+
)
)(
+
)
λ(γ
)(
1
1
x
1
x
1
1
1
x
1
1
x
(
) λ 2
) λ +
1
+
1
)
x
1
)(
1
x
) λ 1
) λ + λ(γ
2
) λ (
) λ 1
= λ(
1
x
(
1
+
1
)
x
1
)
(
1
x
1
+
1
)
x
(
) λ 2
+
)
) λ +
)(
1
1
x
1
1
x
) λ (
) λ 1
) λ 1
) λ
+ λ(γ
1
)(
1
x
1
+
1
)
x
+ λ(γ
1
)(
1
x
(
1
+
1
)
x
(
) λ 2
1
+
1
)
x
) λ +
1
)(
1
x
2
) λ 1
) λ 1
λγ
(
1
x
(
1
+
1
)
x
=
>
0
(1.273)
(
) λ 2
) λ
1
+
1
)
x
1
)(
1
x
and
r ( x )
λγ x λ 1
) x λ
γ x λ
) x λ 1
) x ) λ +
) x ) λ 1
(
+
λ(γ
)(
+
λ(γ
1
1
1
1
1
1
1
=
( 1 + 1 ) x ) λ + 1 ) x λ 2
2 x λ 1
) λ 1
λγ
(
1
+
1
)
x
(1.274)
=
> 0
(
) x λ 2
) x ) λ +
+
1
1
1
(
)
(
)
Therefore, both h
are the increasing functions of x .
Based on the above analysis, for two collections of IFVs
x
and r
x
α i
= α i ,
v α i )(
=
i
1
,
2
,...,
n
)
and
β i
= β i ,
v β i )(
i
=
1
,
2
,...,
n
)
,if
μ α i
μ β i
and v α i
v β i ,for
all i ,wehave
S
(
GHIFWA
1 2 ,...,α n ))
S
(
GHIFWA
1 2 ,...,β n ))
(1.275)
which completes the proof.
Based on the monotonicity, the following property can be obtained:
α
α +
Theorem 1.41 (Xia and Xu 2011) Let
and
be given by Eqs. ( 1.35 )
and ( 1.36 ), then
α
1 2 ,...,α n ) α +
GHIFWA
(1.276)
which is called of boundedness.
As the values of the parameters change, some special cases can be obtained (Xia
and Xu 2011):
Case 1 If
λ =
1, then Eq. ( 1.243 ) is transformed as:
 
Search WWH ::




Custom Search