Information Technology Reference
In-Depth Information
n
w i α λ
1
λ
GHIFWA
1 2 ,...,α n ) =
GHIFWA
(α,α,...,α) =
= α
i
=
1
(1.269)
which is called of idempotency.
Theorem 1.40 Let
β i
= β i ,
v β i )(
i
=
1
,
2
,...,
n
)
be a collection of IFVs, if
μ α i
μ β i and v α i
v β i , for all
i , then
GHIFWA
1 2 ,...,α n )
GHIFWA
1 2 ,...,β n )
(1.270)
which is called of monotonicity.
x
+
y
xy
(
1
γ)
xy
(
,
) =
Proof Let f
x
y
, then
1
(
1
γ)
xy
( 1 ( 2 γ) y )( 1 ( 1 γ) xy ) + ( x + y ( 2 γ) xy )( 1 γ) y
( 1 ( 1 γ) xy )
f ( x , y ) x
=
2
xy 2
+ ( 1 γ) xy + ( 1 γ) y 2
( 2 γ)( 1 γ) xy 2
1
(
2
γ)
y
(
1
γ)
xy
+ (
2
γ)(
1
γ)
=
2
( 1 ( 1 γ) xy )
y 2
1
(
2
γ)
y
+ (
1
γ)
((
1
γ)
y
1
)(
y
1
)
(1.271)
=
=
2
2
( 1 ( 1 γ) xy )
( 1 ( 1 γ) xy )
((
1
γ) y
1
)( y
1
)
) x
Since 0
<
x
,
y
<
1 and
γ>
0, then f
(
x
,
y
=
>
0, which
( 1 ( 1 γ) xy )
2
indicates that f
(
x
,
y
)
is an increasing function of x . Similarly, we can prove that
f
(
x
is also an increasing function of y .
Let g(
,
y
)
xy
x
,
y
) =
, then
γ + (
1
γ)(
x
+
y
xy
)
y + ( 1 γ)( x + y xy )) xy + ( 1 γ)( 1 y ))
γ + (
g( x , y ) x
=
1
γ)( x + y xy )
γ) y 2
γ) xy 2
γ) xy 2
γ y + (
γ) xy + (
(
(
γ) xy + (
1
1
1
1
1
=
γ + ( 1 γ)( x + y xy )
γ y + ( 1 γ) y 2
γ + ( 1 γ)( x + y xy )
y (γ ( 1 y ) + y )
γ + ( 1 γ)( x + y xy )
(1.272)
=
=
> 0
which indicates that g(
,
)
x
y
is an increasing function of x . Similarly, we can prove
that g(
,
)
x
y
is also an increasing function of y .
x ) λ
( 1 + 1 ) x ) λ + 1 )( 1 x ) λ
) x ) λ (
γ x λ
( 1 + 1 ) x ) λ + 1 ) x λ
(
+
1
1
1
Let h
(
x
) =
and r
(
x
) =
,
then
Search WWH ::




Custom Search