Biomedical Engineering Reference
In-Depth Information
154. Wrona M, Wardman P. Properties of the radical intermediate obtained on oxidation of 2′,7′-dichlorodihy-
drofluorescein, a probe for oxidative stress. Free Radical Biology and Medicine . 2006;41(4):657-67.
155. Aam BB, Fonnum F. Carbon black particles increase reactive oxygen species formation in rat alveolar
macrophages in vitro . Archives of Toxicology . 2007;81(6):441-6.
156. Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms.
International Journal of Cancer . 2004;109(6):799-809.
157. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway
epithelial cells. Toxicology in Vitro . 2009;23(7):1365-71.
158. Fujii T, Hayashi S, Hogg JC, Vincent R, Van Eeden SF. Particulate matter induces cytokine expres-
sion in human bronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology .
2001;25(3):265-71.
159. Park E-J, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium
dioxide nanoparticles by intratracheal instillation. Toxicology . 2009;260(1):37-46.
160. Bonner JC. The epidermal growth factor receptor at the crossroads of airway remodeling. American
Journal of Physiology—Lung Cellular and Molecular Physiology . 2002;283(3):L528-30.
161. Sime P, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL, Gauldie J. Transfer of tumor necro-
sis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis
with induction of transforming growth factor-beta1 and myofibroblasts. American Journal of Pathology.
1998;153(3):825-32.
162. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat
shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster . Toxicology and Applied
Pharmacology . 2010;242(3):263-9.
163. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced
by titanium dioxide nanoparticles in human epidermal cells. Toxicology in Vitro . 2011;25(1):231-41.
164. Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN. Acute inhalation toxicity of cerium oxide nanopar-
ticles in rats. Toxicology Letters . 2011;205(2):105-15.
165. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et  al.
Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways.
Toxicology in Vitro . 2012;27:330-38.
166. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical
Chemistry . 2005;51(12):2415-8.
167. Tao F, Kobzik L. Lung macrophage-epithelial cell interactions amplify particle-mediated cytokine
release. American Journal of Respiratory Cell and Molecular Biology . 2002;26(4):499-505.
168. Wottrich R, Diabaté S, Krug HF. Biological effects of ultrafine model particles in human macrophages
and epithelial cells in mono- and co-culture. International Journal of Hygiene and Environmental Health .
2004;207(4):353-61.
169. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: Comparing in vitro mea-
surements to in vivo pulmonary toxicity profiles. Toxicological Sciences . 2007;97(1):163-80.
170. Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal
nanoparticles in vivo and in vitro : Highlighting the role of particle surface area and surface reactivity.
Inhalation Toxicology . 2007;19(10):849-56.
171. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ et al. In vitro toxicity evaluation
of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro . 2007;21(3):438-48.
172. Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C 60
water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles.
Nano Letters . 2007;7(8):2399-406.
173. Rao KMK, Porter DW, Meighan T, Castranova V. The sources of inflammatory mediators in the lung after
silica exposure. Environmental Health Perspectives . 2004;112(17):1679.
174. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and
irritation potential of quantum dot nanoparticles in epidermal keratinocytes. Journal of Investigative
Dermatology . 2006;127(1):143-53.
175. Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin.
Carbon . 2006;44(6):1070-8.
176. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells
(BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part
Fibre Toxicology . 2007;4(2). doi:10.1186/1743-8977-4-2.
177. Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH. Adsorption of essential micronu-
trients by carbon nanotubes and the implications for nanotoxicity testing. Small . 2008;4(6):721-7.
Search WWH ::




Custom Search