Biomedical Engineering Reference
In-Depth Information
178. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG et al. Nanogenotoxicology:
The DNA damaging potential of engineered nanomaterials. Biomaterials . 2009;30(23-24):3891-914.
179. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver
nanoparticles in human cells. ACS Nano . 2008;3(2):279-90.
180. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce
DNA damage and genetic instability in vivo in mice. Cancer Research . 2009;69(22):8784-9.
181. Li JJ, Zou L, Hartono D, Ong CN, Bay BH, Lanry Yung LY. Gold nanoparticles induce oxidative damage
in lung fibroblasts in vitro . Advanced Materials . 2008;20(1):138-42.
182. Pantarotto D, Briand J-P, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes
by carbon nanotubes. Chemical Communications . 2004;10(1):16-7.
183. Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multi-
wall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicological Sciences .
2009;110(2):442-8.
184. Roller M. Carcinogenicity of inhaled nanoparticles. Inhalation Toxicology . 2009;21(S1):144-57.
185. Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J et al. Nano-scaled particles of
titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. The American
Journal of Pathology . 2009;175(5):2171-83.
186. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K et al. Silver nanoparticles:
Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells.
Toxicology Letters . 2011;201(1):27-33.
187. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour.
Toxicology and Applied Pharmacology . 2012;258(2):151-65.
188. Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J et  al. Oxidative stress-dependent toxicity of silver
nanoparticles in human hepatoma cells. Toxicology in Vitro . 2009;23(6):1076-84.
189. Lemaire F, Mandon CA, Reboud J, Papine A, Angulo J, Pointu H et  al. Toxicity assays in nanodrops
combining bioassay and morphometric endpoints. PloS One . 2007;2(1):e163.
190. Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK et al. High-content screening as a uni-
versal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano . 2008;2(5):928-38.
191. Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response
to nanoparticle exposure: Particle number, surface area, or what? Environmental Health Perspectives .
2007;115(2):187.
192. Tang M, Zhang T, Xue Y, Wang S, Huang M, Yang Y et  al. Dose dependent in vivo metabolic
characteristics of titanium dioxide nanoparticles. Journal of Nanoscience and Nanotechnology .
2010;10(12):8575-83.
193. Leszczynski J. Bionanoscience: Nano meets bio at the interface. Nature Nanotechnology . 2010;5(9):633-4.
194. Barnard AS. How can ab initio simulations address risks in nanotech? Nature Nanotechnology .
2009;4(6):332-5.
195. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to
pharmacology. Advanced Drug Delivery Reviews . 2006;58(14):1460-70.
196. Puzyn T, Gajewicz A, Leszczynska D, Leszczynski J. Nanomaterials—The next great challenge for
QSAR modelers. In: Puzyn T, Leszczynski J, Cronin M, eds. Recent Advances in QSAR Studies: Methods
and Applications . London, New York: M.T. Springer; 2010.
197. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A et al. Using nano-QSAR to predict the
cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology . 2011;6(3):175-8.
198. Bonnefoi MS, Belanger SE, Devlin DJ, Doerrer NG, Embry MR, Fukushima S et  al. Human and
environmental health challenges for the next decade (2010-2020). Critical Reviews in Toxicology .
2010;40(10):893-911.
199. Lyon DY, Adams LK, Falkner JC, Alvarez PJ. Antibacterial activity of fullerene water suspen-
sions: Effects of preparation method and particle size. Environmental Science and Technology .
2006;40(14):4360-6.
200. Zhu S, Oberdörster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C 60 ) in two aquatic
species, Daphnia and fathead minnow. Marine Environmental Research . 2006;62:S5-9.
201. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S et  al. In vivo biomodification
of  lipid-coated  carbon nanotubes by Daphnia magna . Environmental Science and Technology .
2007;41(8):3025-9.
202. Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout,
( Oncorhynchus mykiss ): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic
Toxicology . 2007;82(2):94-109.
Search WWH ::




Custom Search