Biomedical Engineering Reference
In-Depth Information
[33]
Muller-Putz, G. R., et al., “Steady-State Somatosensory Evoked Potentials: Suitable Brain
Signals for Brain-Computer Interfaces?” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 14,
No. 1, 2006, pp. 30-37.
[34]
Kelly, S. P., et al., “Visual Spatial Attention Control in an Independent Brain-Computer
Interface,” IEEE Trans. Biomed. Eng., Vol. 52, No. 9, 2005, pp. 1588-1596.
[35]
Trejo, L. J., R. Rosipal, and B. Matthews, “Brain-Computer Interfaces for 1-D and 2-D Cur-
sor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual
Evoked Potentials,” IEEE Trans. on Neural Syst. Rehabil. Eng., Vol. 14, No. 2, 2006,
pp. 225-229.
[36]
Wang, Y., et al., “Lead Selection for SSVEP-Based Brain-Computer Interface,” Proc. IEEE
Engineering in Medicine and Biology Society Conf., Vol. 6, 2004, pp. 4507-4510.
[37]
Kluge, T., and M. Hartmann, “Phase Coherent Detection of Steady-State Evoked Poten-
tials: Experimental Results and Application to Brain-Computer Interfaces,” 3rd Int.
IEEE/EMBS Conf. on Neural Engineering, CNE '07, 2007, pp. 425-429.
[38]
Vidal, J. J., “Real-Time Detection of Brain Events in EEG,” Proc. IEEE, Vol. 65, No. 5,
1977, pp. 633-641.
[39]
Lee, P. L., et al., “The Brain-Computer Interface Using Flash Visual Evoked Potential and
Independent
Component
Analysis,”
Ann.
Biomed.
Eng.,
Vol.
34,
No.
10,
2006,
pp. 1641-1654.
[40]
Allison, B. Z., et al., “Towards an Independent Brain-Computer Interface Using Steady
State Visual Evoked Potentials,” Clin. Neurophysiol., Vol. 119, No. 2, 2008, pp. 399-408.
[41]
Morgan, S. T., J. C. Hansen, and S. A. Hillyard, “Selective Attention to Stimulus Location
Modulates the Steady-State Visual Evoked Potential,” Proc. Natl. Acad. Sci. USA, Vol. 93,
No. 10, 1996, pp. 4770-4774.
[42]
Ding, J., G. Sperling, and R. Srinivasan, “Attentional Modulation of SSVEP Power Depends
on the Network Tagged by the Flicker Frequency,” Cereb. Cortex, Vol. 16, No. 7, 2006,
pp. 1016-1029.
[43]
Kelly, S. P., et al., “Visual Spatial Attention Tracking Using High-Density SSVEP Data for
Independent Brain-Computer Communication,” IEEE Trans. on Neural Syst. Rehabil.
Eng., Vol. 13, No. 2, 2005, pp. 172-178.
[44]
Fonseca, C., et al., “A Novel Dry Active Electrode for EEG Recording,” IEEE Trans. on
Biomed. Eng., Vol. 54, No. 1, 2007, p. 163.
[45]
Friman, O., I. Volosyak, and A. Graser, “Multiple Channel Detection of Steady-State Visual
Evoked Potentials for Brain-Computer Interfaces,” IEEE Trans. on Biomed. Eng., Vol. 54,
No. 4, 2007, pp. 742-750.
[46]
Lin, Z., et al., “Frequency Recognition Based on Canonical Correlation Analysis for
SSVEP-Based BCIs,” IEEE Trans. on Biomed. Eng., Vol. 53, No. 12, Pt. 2, 2006,
pp. 2610-2614.
[47]
Pfurtscheller, G., and C. Neuper, “Motor Imagery and Direct Brain-Computer Communi-
cation,” Proc. IEEE, Vol. 89, No. 7, 2001, pp. 1123-1134.
[48]
Neuper, C., “Motor Imagery and EEG-Based Control of Spelling Devices and
Neuroprostheses,” in Event-Related Dynamics of Brain Oscillations, C. Neuper and W.
Klimesch, (eds.), New York: Elsevier, 2006.
[49]
MacKay, W. A., “Wheels of Motion: Oscillatory Potentials in the Motor Cortex,” in Motor
Cortex in Voluntary Movements: A Distributed System for Distributed Functions , Methods,
and New Frontiers in Neuroscience, E. Vaadia and A. Riehle, (eds.), Boca Raton, FL: CRC
Press, 2005, pp. 181-212.
[50]
Pfurtscheller, G., and A. Aranibar, “Event-Related Cortical Desynchronization Detected by
Power Measurements of Scalp EEG,” Electroencephalogr. Clin. Neurophysiol., Vol. 42,
No. 6, 1977, pp. 817-826.
[51]
Blankertz, B., et al., “The Noninvasive Berlin Brain-Computer Interface: Fast Acquisition of
Effective Performance in Untrained Subjects,” NeuroImage, Vol. 37, No. 2, 2007,
pp. 539-550.
Search WWH ::




Custom Search