Biomedical Engineering Reference
In-Depth Information
[12]
Wolpaw, J. R., D. J. McFarland, and E. Bizzi, “Control of a Two-Dimensional Movement
Signal by a Noninvasive Brain-Computer Interface in Humans,” Proc. Natl. Acad. Sci.
USA, Vol. 101, No. 51, 2004, pp. 17849-17854.
[13]
Blankertz, B., et al., “The Berlin Brain-Computer Interface: EEG-Based Communication
Without Subject Training,” IEEE Trans. on Neural Syst. Rehabil. Eng., Vol. 14, No. 2,
2006, pp. 147-152.
[14]
Cheng, M., et al., “Design and Implementation of a Brain-Computer Interface with High
Transfer Rates,” IEEE Trans. on Biomed. Eng., Vol. 49, No. 10, 2002, pp. 1181-1186.
[15]
Middendorf,
M.,
et
al.,
“Brain-Computer
Interfaces
Based
on
the
Steady-State
Visual-Evoked
Response,”
IEEE
Trans.
on
Rehabil.
Eng.,
Vol.
8,
No.
2,
2000,
pp. 211-214.
[16]
Birbaumer, N., et al., “A Spelling Device for the Paralysed,” Nature, Vol. 398, No. 6725,
1999, pp. 297-298.
[17]
Hinterberger, T., et al., “A Brain-Computer Interface (BCI) for the Locked-In: Comparison
of Different EEG Classifications for the Thought Translation Device,” Clin. Neurophysiol.,
Vol. 114, No. 3, 2003, pp. 416-425.
[18]
Donchin, E., K. M. Spencer, and R. Wijesinghe, “The Mental Prosthesis: Assessing the
Speed of a P300-Based Brain-Computer Interface,” IEEE Trans. on Rehabil. Eng., Vol. 8,
No. 2, 2000, pp. 174-179.
[19]
Krusienski, D. J., et al., “Toward Enhanced P300 Speller Performance,” J. Neurosci. Meth-
ods, Vol. 167, No. 1, 2008, pp. 15-21.
[20]
Wolpaw, J. R., “Brain-Computer Interfaces as New Brain Output Pathways,” J. Physiol.,
Vol. 579, No. 3, 2007, p. 613.
[21]
Blankertz, B., et al., “Optimizing Spatial Filters for Robust EEG Single-Trial Analysis,”
IEEE Signal Processing Mag., Vol. 25, No. 1, 2008, pp. 41-56.
[22]
Kachenoura, A., et al., “ICA: A Potential Tool for BCI Systems,” IEEE Signal Processing
Mag., Vol. 25, No. 1, 2008, pp. 57-68.
[23]
Lotte, F., et al., “A Review of Classification Algorithms for EEG-Based Brain-Computer
Interfaces,” J. Neural Eng., Vol. 4, No. 2, 2007, pp. R1-R13.
[24]
Pineda, J. A., et al., “Learning to Control Brain Rhythms: Making a Brain-Computer Inter-
face Possible,” IEEE Trans. on Neural Syst. Rehabil. Eng., Vol. 11, No. 2, 2003,
pp. 181-184.
[25]
Regan, D., Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic
Fields in Science and Medicine, New York: Elsevier, 1989.
[26]
Hoffmann, U., et al., “An Efficient P300-Based Brain-Computer Interface for Disabled Sub-
jects,” J. Neurosci. Methods, Vol. 167, No. 1, 2008, pp. 115-125.
[27]
Celesia, G. G., and N. S. Peachey, “Visual Evoked Potentials and Electroretinograms,” in
Electroencephalography: Basic Principles, Clinical Applications, and Related Fields ,E.
Niedermeyer and F. H. Lopes da Silva, (eds.), Baltimore, MD: Williams and Wilkins, 1999,
pp. 1017-1043.
[28]
Vidal, J. J., “Toward Direct Brain-Computer Communication,” Ann. Rev. Biophys.
Bioeng., Vol. 2, 1973, pp. 157-180.
[29]
Sutter, E. E., “The Brain Response Interface: Communication Through Visually Induced
Electrical Brain Responses,” J. Microcomputer Applications, Vol. 15, No. 1, 1992,
pp. 31-45.
[30]
Gao, X., et al., “A BCI-Based Environmental Controller for the Motion-Disabled,” IEEE
Trans. on Neural Syst. Rehabil. Eng., Vol. 11, No. 2, 2003, pp. 137-140.
[31]
Wang, Y., et al., “A Practical VEP-Based Brain-Computer Interface,” IEEE Trans. on Neu-
ral Syst. Rehabil. Eng., Vol. 14, No. 2, 2006, pp. 234-239.
[32]
Muller-Putz, G. R., et al., “Steady-State Visual Evoked Potential (SSVEP)-Based Commu-
nication: Impact of Harmonic Frequency Components,” J. Neural Eng., Vol. 2, No. 4,
2005, pp. 123-130.
Search WWH ::




Custom Search