Chemistry Reference
In-Depth Information
[96] Mayer, M. and Meyer, B., Group epitope mapping by saturation transfer difference NMR to
identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc , 2001,
123 , 6108-6117.
[97] Sandstrom, C., et al ., Atomic mapping of the interactions between the antiviral agent
cyanovirin-N and oligomannosides by saturation-transfer difference NMR. Biochemistry ,
2004, 43 , 13926-13931.
[98] Hajduk, P. J., et al ., SOS-NMR: a saturation transfer NMR-based method for determ-
ining the structures of protein-ligand complexes.
J Am Chem Soc , 2004, 126 ,
2390-2398.
[99] Benie, A. J., et al ., Virus-ligand interactions: identification and characterization of ligand
binding by NMR spectroscopy. J Am Chem Soc , 2003, 125 , 14-15.
[100] Meinecke, R. and Meyer, B., Determination of the binding specificity of an integral mem-
brane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin
alphaIIbbeta3. J Med Chem , 2001, 44 , 3059-3065.
[101] Claasen, B., et al ., Direct observation of ligand binding tomembrane proteins in living cells by a
saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly
higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem
Soc , 2005, 127 , 916-919.
[102] Dalvit, C., Homonuclear 1D and 2D NMR experiments for the observation of solvent-solute
interactions. J Magn Reson B , 1996, 112 , 282-288.
[103] Johnson, E. C., et al ., Application of NMR SHAPES screening to an RNA target. J Am Chem
Soc , 2003, 125 , 15724-15725.
[104] Di Micco, S., et al ., Differential-frequency saturation transfer difference NMR spectroscopy
allows the detection of different ligand-DNA binding modes. Angew Chem Int Ed , 2006, 45 ,
224-228.
[105] Feeney, J., et al ., The effects of intermediate exchange processes on the estimation of
equilibrium constants by NMR. J Magn Reson 1979, 33 , 519-529.
[106] Meiboom, S. and Gill, D., Modified spin-echo method for measuring nuclear relaxation times.
Rev. Sci. Instrum ., 1958, 29 , 688-691.
[107] van Dongen, M., et al ., Structure-based screening and design in drug discovery. Drug Discov
Today , 2002, 7 , 471-478.
[108] Hajduk, P. J., et al ., NMR-based screening of proteins containing 13 C-labeled methyl groups.
J Am Chem Soc , 2000, 122 , 7898-7904.
[109] Weigelt, J., et al ., Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
J Am Chem Soc , 2002, 124 , 2446-2447.
[110] Weigelt, J., et al ., Site-selective labeling strategies for screening by NMR. Comb Chem High
Throughput Screen , 2002, 5 , 623-630.
[111] McCoy, M.A. andWyss, D. F., Spatial localization of ligand binding sites from electron current
density surfaces calculated from NMR chemical shift perturbations. J Am Chem Soc , 2002,
124 , 11758-11763.
[112] McCoy, M. A., et al ., Screening of protein kinases by ATP-STD NMR spectroscopy. JAm
Chem Soc , 2005, 127 , 7978-7979.
[113] Cheng,Y. and Prusoff,W. H., Relationship between the inhibition constant ( K 1 ) and the concen-
tration of inhibitor which causes 50 per cent inhibition ( I 50 ) of an enzymatic reaction. Biochem
Pharmacol , 1973, 22 , 3099-3108.
[114] Sanchez-Pedregal, V. M., et al ., The INPHARMAmethod: protein-mediated interligand NOEs
for pharmacophore mapping. Angew Chem Int Ed , 2005, 44 , 4172-4175.
[115] Banaszak, L., et al ., Lipid-binding proteins: a family of fatty acid and retinoid transport
proteins. Adv Protein Chem , 1994, 45 , 89-151.
Search WWH ::




Custom Search