Chemistry Reference
In-Depth Information
[116] Reese-Wagoner, A., et al ., Structural properties of the adipocyte lipid binding protein. Biochim
Biophys Acta , 1999, 1441 , 106-116.
[117] Xu, Z., et al ., Crystal structure of recombinant murine adipocyte lipid-binding protein.
Biochemistry , 1992, 31 , 3484-3492.
[118] Hanhoff, T., et al ., Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell
Biochem , 2002, 239 , 45-54.
[119] Zimmerman, A. W. and Veerkamp, J. H., New insights into the structure and function of fatty
acid-binding proteins. Cell Mol Life Sci , 2002, 59 , 1096-1116.
[120] Boord, J. B., et al ., Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and
atherosclerosis. Curr Opin Lipidol , 2002, 13 , 141-147.
[121] Haunerland, N. H. and Spener, F., Fatty acid-binding proteins - insights from genetic
manipulations. Prog Lipid Res , 2004, 43 , 328-349.
[122] Jenkins-Kruchten, A. E., et al ., Fatty acid-binding protein-hormone-sensitive lipase interac-
tion. Fatty acid dependence on binding. J Biol Chem , 2003, 278 , 47636-47643.
[123] Hotamisligil, G. S., et al ., Uncoupling of obesity from insulin resistance through a targeted
mutation in aP2, the adipocyte fatty acid binding protein. Science , 1996, 274 , 1377-1379.
[124] Uysal, K. T., et al ., Improved glucose and lipid metabolism in genetically obese mice lacking
aP2. Endocrinology , 2000, 141 , 3388-3396.
[125] Binas, B., et al ., Requirement for the heart-type fatty acid binding protein in cardiac fatty acid
utilization. FASEB J , 1999, 13 , 805-812.
[126] Veerkamp, J. H., et al ., Structural and functional features of different types of cytoplasmic
fatty acid-binding proteins. Biochim Biophys Acta , 1991, 1081 , 1-24.
[127] Cohen, P., Protein kinases - the major drug targets of the twenty-first century?, Nat Rev Drug
Discov , 2002, 1 , 309-315.
[128] Csermely, P., et al ., The efficiency of multi-target drugs: the network approach might help drug
design. Trends Pharmacol Sci , 2005, 26 , 178-182.
[129] Morphy, R. and Rankovic, Z., Fragments, network biology and designing multiple ligands.
Drug Discov Today , 2007, 12 , 156-160.
[130] Morphy, R. and Rankovic, Z., The physicochemical challenges of designing multiple ligands.
J Med Chem , 2006, 49 , 4961-4970.
[131] Morphy, R., The influence of target family and functional activity on the physicochemical
properties of pre-clinical compounds. J Med Chem , 2006, 49 , 2969-2978.
[132] Hopkins, A. L., et al ., Can we rationally design promiscuous drugs?, Curr Opin Struct Biol ,
2006, 16 , 127-136.
[133] Zartler, E. R., et al ., RAMPED-UP NMR: multiplexed NMR-based screening for drug
discovery. J Am Chem Soc , 2003, 125 , 10941-10946.
[134] Inooka, H., et al ., Conformation of a peptide ligand bound to its G-protein coupled receptor.
Nat Struct Biol , 2001, 8 , 161-165.
[135] Cherezov, V., et al ., High-resolution crystal structure of an engineered human beta2-adrenergic
G protein-coupled receptor. Science , 2007, 318 , 1258-1265.
[136] Lundstrom, K., Structural genomics and drug discovery. J Cell Mol Med , 2007, 11 , 224-238.
[137] Vanwetswinkel, S., et al ., TINS, target immobilized NMR screening: an efficient and sensitive
method for ligand discovery. Chem Biol , 2005, 12 , 207-216.
[138] Marquardsen, T., et al ., Development of a dual cell, flow-injection sample holder and NMR
probe for comparative ligand-binding studies. J Magn Reson , 2006, 182 , 55-65.
Search WWH ::




Custom Search