Chemistry Reference
In-Depth Information
8
<
:
z 1 <0;
0
if
R 1 ..N 1/x 2 / D
z 1 >L 1 ;
L 1
if
z 1
otherwise;
D A c 1 B.N 1/x 2 = 2.B C e 1 / and
with z 1
8
<
z 2 <0;
0
if
R 2 .x 1 C .N 2/x 2 / D
z 2 >L 2 ;
L 2
if
:
z 2
otherwise;
with z 2 D A c 2 B.x 1 C .N 2/x 2 / = 2.B C e 2 / :
The interior equilibrium is independent of a k , k D 1;2, but depends on the
number of firms N.ItisgivenbyE D .x 1 .N/; x 2 .N// with
A.B C 2e 2 / 2c 1 e 2 C B.c 2 .N 1/ c 1 N/
2B.N 2/.B C e 1 / C 4.B C e 1 /.B C e 2 / B 2 .N 1/ ;
x 1 .N/ D
2.B C e 1 /.A c 2 / B.A c 1 /
2B.N 2/.B C e 1 / C 4.B C e 1 /.B C e 2 / B 2 .N 1/ :
x 2 .N/ D
The Jacobian matrix computed at the interior equilibrium is
1 a 1
! ;
B.N
1/
a 1
2.B
C
e 1 /
B.N 2/
2.B
B
2.B
a 2
1 a 2 a 2
C
e 2 /
C
e 2 /
from which the stability conditions can be obtained by applying conditions (1.40).
Interesting stability results are obtained for the boundary equilibria, in the case when
B 2 >4.B C e 1 /.B C e 2 / (illustrated in Fig. 1.3 for one possible situation). The
Jacobian evaluated in the neighborhood of E 1 is either
1 a 1
!
1 a 1 0
01
B.N 1/
2.BCe 1 /
a 1
or
a 2
0
1 a 2
or both, if the equilibrium is on the boundary between the two regions, since R 2 0
here. The Jacobian evaluated in the neighborhood of E 2 is either
1 a 1
!
1 a 1
!
0
0
or
B
2.B
B.N
2/
B.N
1/
a 2
1 a 2 a 2
0
1 a 2 a 2
C
e 2 /
2.B
C
e 2 /
2.B
C
e 2 /
or both, because R 2 0 here.
 
Search WWH ::




Custom Search