Biomedical Engineering Reference
In-Depth Information
[133] H. K. Rau, N. DeJonge and W. Haehnel, Combinatorial synthesis of four-helix
bundle hemoproteins for tuning of cofactor properties, Angew. Chem. Int. Ed ., 39,
250-253 (2000).
[134] R. Schnepf, P. H ¨ rth, E. Bill, K. Wieghardt, P. Hildebrandt and W. Haehnel, De
novo design and characterization of copper centers in synthetic four-helix-bundle
proteins, J. Am. Chem. Soc ., 123, 2186-2195 (2001).
[135] R. Frank, SPOT synthesis - An easy technique for the positionally addressable,
parallel chemical synthesis on a membrane, Tetrahedron , 48, 9217-9232 (1992).
[136] K. J. Jensen and G. Barany, Carbopeptides: Carbohydrates as templates for de novo
design of proteins, J. Peptide Res ., 56, 3-11 (2000).
[137] K. J. Jensen and J. Brask, Carbohydrates as templates for control of distance-
geometry in de novo designed proteins, Cell. Mol. Life Sci ., 59, 859-869 (2002).
[138] J. Brask and K. J. Jensen, Carbopeptides: Chemoselective ligation of peptide alde-
hydes to an aminooxy-functionalized D -galactose template, J. Peptide Sci ., 6,
290-299 (2000).
[139] J. Brask and K. J. Jensen, Carboproteins: A 4-a-helix bundle protein model
assembled on a D-galactopyranoside template, Bioorg. Med. Chem. Lett ., 11,
697-700 (2001).
[140] J. Brask, H. Wackerbarth, K. J. Jensen, J. Zhang, J. U. Nielsen, J. E. T. Andersen and
J. Ulstrup, Monolayers of a de novo designed 4- h -helix bundle carboprotein and
partial structures on Au(111)-electrodes, Bioelectrochem ., 56, 27-32 (2002).
[141] J. Brask, H. Wackerbarth, K. J. Jensen, J. Zhang, I. Chorkendorff and
J. Ulstrup, Monolayer assemblies of a de novo designed 4- h -helix bundle carbo-
protein and its sulfur anchor fragment on Au(111)-surfaces addressed by volta-
metry and in situ scanning tunneling microscopy, J. Am. Chem. Soc ., 125,
94-104 (2003).
[142] W. F. DeGrado, Z. R. Wassermann and J. D. Lear, Protein design, a minimalistic
approach, Science , 243, 622-628 (1989).
[143] A. S. Causton and J. C. Sherman, A comparison of three- and four-helix bundle
TASP molecules, J. Peptide Sci ., 8, 275-282 (2002).
[144] J. Brask, J. M. Dideriksen, J. Nielsen and K. J. Jensen, Monosaccharide templates
for de novo designed 4-a-helixbundle proteins: Template effects in carboproteins,
Org. Biomol. Chem ., 1, 2247-2252 (2003).
[145] R. Høiberg-Nielsen, A. P. T. Shelton, K. K. Sørensen, M. Roessle, D I. Svergun,
P. W. Thusltrup, K. J. Jensen and L. Arleth, 3- instead of 4-helix foramtion in
de novo designed protein in solution revealed by small-angle X-ray scattering,
ChemBioChem , 9, 2663-2672 (2008).
[146] H. Wackerbarth, A. P. Tofteng, K. J. Jensen, I. Chorkendorff and J. Ulstrup,
Hierarchical self-assembly of designed 2 2-helix bundle proteins on Au(111)
surfaces, Langmuir , 22, 6661-6667 (2006).
[147] D. Seebach, A. K. Beck and D. J. Bierbaum, The world of b- and g-peptides
comprised of homlogated proteinogenic amino acids and other components,
Chemistry & Biodiversity , 1, 1111-1239 (2004).
[148] R. P. Cheng, Beyond de novo protein design - De novo design of non-natural folded
oligomers, Curr. Opin. Struct. Biol ., 14, 512-520 (2004).
[149] P. I. Arvidsson, M. Rueping and D. Seebach, Design, machine syntehsis, and NMR-
solution structure of a b-heptapeptide forming a salt-bridge stabilized 3 14 -helix in
methanol and in water, Chem. Commun ., 649-650 (2001).
Search WWH ::




Custom Search