Biomedical Engineering Reference
In-Depth Information
[116] M. Mutter and G. Tuchscherer, Non-native architectures in protein design and
mimicry, Cell. Mol. Life Sci ., 53, 851-863 (1997).
[117] M. Mutter and S. Vuilleumier, A chemical appraoch to protein design - Template-
assembled synthetic proteins (TASP), Angew. Chem. Int. Ed. Engl ., 28, 535-554
(1989).
[118] M. Mutter, G. G. Tuchscherer, C. Miller, K.-H. Altmann, R. I. Carey, D. F. Wyss,
A. M. Labhardt and J. E. Rivier, Template-assembled synthetic proteins with four-
helix-bundle topology. Total chemical synthesis and conformational studies, J. Am.
Chem. Soc ., 114, 1463-1470 (1992).
[119] M. Mutter, P. Dumy, P. Garrouste, C. Lehmann, M. Mathieu, C. Peggion, S. Peluso,
A. Razaname and G. Tuchscherer, Template assembled synthetic proteins (TASP) as
functional mimetics of proteins, Angew. Chem. Int. Ed. Engl ., 35, 1482-1485
(1996).
[120] S. Peluso, P. Dumy, C. Nkubana, Y. Yokokawa and M. Mutter, Solid-phase
strategies for the assembly of template-based protein mimetics, J. Org. Chem ., 64,
7114-7120 (1999).
[121] T. Sasaki and E. T. Kaiser, Helichrome - Synthesis and enzymatic-activity of a
designed hemeprotein, J. Am. Chem. Soc ., 111, 380-381 (1989).
[122] K. S. ˚ kerfeldt, R. M. Kim, D. Camac, J. T. Groves, J. D. Lear and W. F. DeGrado,
Tetraphilin - A 4-helix proton channel built on a tetraphenylporphyrin framework,
J. Am. Chem. Soc ., 114, 9656-9657 (1992).
[123] M. R. Ghadiri, C. Soares and C. Choi, A convergent approach to protein design -
Metal ion-assisted spontaneous self-assembly of a polypeptide into a triple-helix
bundle protein, J. Am. Chem. Soc ., 114, 825-831 (1992).
[124] M. R. Ghadiri, C. Soares and C. Choi, Design of an artificial 4-helix bundle
metalloprotein via a novel ruthenium(II)-assisted self-assembly process, J. Am.
Chem. Soc ., 114, 4000-4002 (1992).
[125] M. W. Mutz, M. A. Case, J. F. Wishart, M. R. Ghadiri and G. L. McLendon, De
novo design of protein function: Predictable structure-function relationships in
synthetic redox proteins, J. Am. Chem. Soc ., 121, 858-859 (1999).
[126] M. Goodman, Y. Feng, G. Melacini and J. P. Taulane, A template-induced incipient
collagen-like triple-helical structure, J. Am. Chem. Soc ., 118, 5156-5157 (1996).
[127] A. K. Wong, M. P. Jacobsen, D. J. Winzor and D. P. Fairlie, Template assembled
synthetic proteins (TASPs). Are template size, shape, and directionality important in
formation of four-helix bundles?, J. Am. Chem. Soc ., 120, 3836-3841 (1998).
[128] Y. Hamuro, M. C. Calama, H. S. Park and A. D. Hamilton, A calixarene with four
peptide loops: An antibody mimic for recognition of proteins surfaces, Angew.
Chem. Int. Ed. Engl ., 36, 2680-2683 (1997).
[129] A. S. Causton and J. C. Sherman, Design of proteins using rigid organic macrocycles
as scaffolds, Bioorg. Med. Chem ., 7, 23-27 (1999).
[130] A. R. Mezo and J. C. Sherman, Cavitands are effective templates for inducing
stability and nativelike structure in de novo four-helix bundles, J. Am. Chem.
Soc ., 121, 8983-8994 (1999).
[131] H. K. Rau and W. Haehnel, Design, synthesis, and properties of a novel cytochrome
b model, J. Am. Chem. Soc ., 120, 468-476 (1998).
[132] H. K. Rau, N. DeJonge and W. Haehnel, Modular synthesis of de novo designed
metalloproteins for light-induced elecetron-transfer, PNAS , 95, 11526-11531
(1998).
Search WWH ::




Custom Search