Biomedical Engineering Reference
In-Depth Information
[37] Rayz V.L., Boussel L., Lawton M.T., Acevedo-Bolton G., Ge L., Young W.L., Higashida
R.T., Saloner D.: Numerical modeling of the flow in intracranial aneurysms: prediction of
regions prone to thrombus formation. Ann. Biomed. Eng. 36 (11), 1793-1804, 2008.
[38] Paeng D.G., Nam K.H., Shung K.K.: Cyclic and radial variation of the echogenicity of blood
in human carotid arteries observed by harmonic imaging. Ultrasound. Med. Biol. 36 (7), 1118-
1124, 2010.
[39] Nerem R.M., Seed W.A.: An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6 (1),
1-14, 1972.
[40] Ferguson G.G.: Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33 (5),
485-497, 1970.
[41] Lee S.E., Lee S.W., Fischer P.F., Bassiouny H.S., Loth F.: Direct numerical simulation of
transitional flow in a stenosed carotid bifurcation. J. Biomech. 41 (11), 2551-2561, 2008.
[42] Ahmed S.A., Giddens D.P.: Pulsatile poststenotic flow studies with laser Doppler anemome-
try. J. Biomech. 17 (9), 695-705, 1984.
[43] Ryval J., Straatman A.G., Steinman D.A.: Two-equation turbulence modeling of pulsatile
flow in a stenosed tube. J. Biomech. Eng. 126 (5), 625-635, 2004.
[44] Varghese S., Frankel S., Fischer P.: Direct numerical simulation of stenotic flows. Part 2.
Pulsatile flow. Journal of Fluid Mechanics 582 , 281, 2007.
[45] Baek H., Jayaraman M.V., Richardson P.D., Karniadakis G.E.: Flow instability and wall shear
stress variation in intracranial aneurysms. J. R. Soc. Interface 7 (47), 967-988, 2009.
[46] Les A.S., Shadden S.C., Figueroa C.A., Park J.M., Tedesco M.M., Herfkens R.J., Dalman
R.L., Taylor C.A.: Quantification of hemodynamics in abdominal aortic aneurysms during
rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann.
Biomed. Eng. 38 (4), 1288-1313.
[47] Wang C., Pekkan K., de Zelicourt D., Horner M., Parihar A., Kulkarni A., Yoganathan A.P.:
Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary con-
nections. Ann. Biomed. Eng. 35 (11), 1840-1856, 2007.
[48] Liu J.S., Lu P.C., Chu S.H.: Turbulence characteristics downstream of bileaflet aortic valve
prostheses. J. Biomech. Eng. 122 (2), 118-124 (2000).
[49] Antiga L., Steinman D.A.: Rethinking turbulence in blood. Biorheology 46 (2), 77-81, 2009.
[50] Ge L., Dasi L.P., Sotiropoulos F., Yoganathan A.P.: Characterization of hemodynamic forces
induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36 (2),
276-297 (2008).
[51] Quinlan N.J., Dooley P.N.: Models of flow-induced loading on blood cells in laminar and tur-
bulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35 (8), 1347-
1356, 2007.
[52] Cristini V., Kassab G.S.: Computer modeling of red blood cell rheology in the microcircula-
tion: a brief overview. Ann. Biomed. Eng. 33 (12), 1724-1727, 2005.
[53] Roache P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid
Mech. 29 , 123-160, 1997.
[54] Taylor C.A., Steinman D.A.: Image-based modeling of blood flow and vessel wall dynamics:
applications, methods and future directions: Sixth International Bio-Fluid Mechanics Sym-
posium and Workshop, March 28-30, 2008 Pasadena, California. Ann Biomed Eng 38 (3),
1188-1203, 2010.
Search WWH ::




Custom Search