Biomedical Engineering Reference
In-Depth Information
[17] Qiu Y., Tarbell J.M.: Numerical simulation of pulsatile flow in a compliant curved tube model
of a coronary artery. J. Biomech. Eng. 122 (1), 77-85, 2000.
[18] Ford M.D., Xie J., Wasserman B.A., Steinman D.A.: Is flow in the common carotid artery
fully developed? Physiol. Meas. 29 (11), 1335-1349, 2008.
[19] Hoi Y., Wasserman B.A., Lakatta E.G., Steinman D.A.: Effect of common carotid artery
inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132 (12), 121008,
2010.
[20] Ford M.D., Nikolov H.N., Milner J.S., Lownie S.P., Demont E.M., Kalata W., Loth, F.,
Holdsworth, D.W., Steinman, D.A.: PIV-measured versus CFD-predicted flow dynamics in
anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130 (2), 021015, 2008.
[21] Hoi Y., Zhou Y.Q., Zhang X., Henkelman R.M., Steinman D.A.: Correlation between lo-
cal hemodynamics and lesion distribution in a novel aortic regurgitation murine model of
atherosclerosis. Ann. Biomed. Eng. 39 (5), 1414-1422, 2011.
[22] Zhou Y.Q., Zhu S.N., Foster F.S., Cybulsky M.I., Henkelman R.M.: Aortic regurgitation dra-
matically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice.
Arterioscler. Thromb. Vasc. Biol. 30 (6), 1181-1188, 2010.
[23] Hoi Y., Wasserman B.A., Xie Y.J., Najjar S.S., Ferruci L., Lakatta E.G., Gerstenblith G.,
Steinman D.A.: Characterization of volumetric flow rate waveforms at the carotid bifurcations
of older adults. Physiol. Meas. 31 (3), 291-302, 2010.
[24] Marshall I., Papathanasopoulou P., Wartolowska K.: Carotid flow rates and flow division at
the bifurcation in healthy volunteers. Physiol. Meas. 25 (3), 691-697, 2004.
[25] Milner J.S., Moore J.A., Rutt B.K., Steinman D.A.: Hemodynamics of human carotid artery
bifurcations: computational studies with models reconstructed from magnetic resonance
imaging of normal subjects. J. Vasc. Surg. 28 (1), 143-156, 1998.
[26] Cebral J.R., Yim P.J., Lohner R., Soto O., Choyke P.L.: Blood flow modeling in carotid
arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9 (11), 1286-
1299, 2002.
[27] Younis H.F., Kaazempur-Mofrad M.R., Chan R.C., Isasi A.G., Hinton D.P., Chau A.H., Kim
L.A., Kamm R.D.: Hemodynamics and wall mechanics in human carotid bifurcation and its
consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model.
Mechanobiol. 3 (1), 17-32, 2004.
[28] Ethier C.R., Simmons C.A.: Introductory Biomechanics: From Cells to Organisms. Cam-
bridge University Press, Cambridge, 2007.
[29] Yilmaz F., Gundogdu M.Y.: A critical review on blood flow in large arteries; relevance
to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheol. J.
20 (4), 197-211, 2008.
[30] Lee S.W., Steinman D.A.: On the relative importance of rheology for image-based CFD mod-
els of the carotid bifurcation. J. Biomech. Eng. 129 (2), 273-278, 2007.
[31] Ballyk P.D., Steinman D.A., Ethier C.R.: Simulation of non-Newtonian blood flow in an end-
to-side anastomosis. Biorheology 31 (5), 565-586, 1994.
[32] Johnston B.M., Johnston P.R., Corney S., Kilpatrick D.: Non-Newtonian blood flow in human
right coronary arteries: steady state simulations. J. Biomech. 37 (5), 709-720, 2004.
[33] Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in
human right coronary arteries: transient simulations. J Biomech 39 (6), 1116-1128 (2006).
[34] Gijsen F.J., Allanic E., van de Vosse F.N., Janssen J.D.: The influence of the non-Newtonian
properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. J.
Biomech. 32 (7), 705-713, 1999.
[35] Box F.M., van der Geest R.J., Rutten M.C., Reiber J.H.: The influence of flow, vessel diame-
ter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model
for unsteady flow. Invest. Radiol. 40 (5), 277-294, 2005.
[36] Steinman D.A., Milner J.S., Norley C.J., Lownie S.P., Holdsworth D.W.: Image-based com-
putational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neu-
roradiol. 24 (4), 559-566, 2003.
Search WWH ::




Custom Search