Biomedical Engineering Reference
In-Depth Information
dismiss or exploit for themselves, the various explicit and implicit assumptions that,
depending upon one's perspective, either confound or invigorate the study of arterial
hemodynamics.
Acknowledgements. The author thanks the many students, fellows, colleagues and study partici-
pants, without whom these adventures would not have been possible. Numerous funding agencies
have supported this research, none more so than Heart and Stroke Foundation of Canada, whose
early and ongoing support for the author's image-based CFD investigations has allowed him to ask
questions that are sometime uncomfortable but ultimately rewarding.
References
[1] Westerhof N., Bosman F., De Vries C.J., Noordergraaf A.: Analog studies of the human sys-
temic arterial tree. J. Biomech. 2 (2): 121-143, 1969.
[2] Pries A.R., Secomb T.W., Gaehtgens P.: Biophysical aspects of blood flow in the microvas-
culature. Cardiovasc. Res. 32 (4): 654-667, 1996.
[3] O'Rourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E.: Clinical applications
of arterial stiffness; definitions and reference values. Am. J. Hypertens. 15 (5): 426-444, 2002.
[4] Davies J.I., Struthers A.D.: Pulse wave analysis and pulse wave velocity: a critical review of
their strengths and weaknesses. J. Hypertens. 21 (3): 463-472, 2003.
[5] O'Rourke M.F.: Pressure and flow waves in systemic arteries and the anatomical design of
the arterial system. J. Appl. Physiol. 23 (2), 139-149, 1967.
[6] Steinman D.A., Ethier C.R.: The effect of wall distensibility on flow in a two-dimensional
end-to-side anastomosis. J. Biomech. Eng. 116 (3): 294-301 , 1994.
[7] Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in
a compliant carotid artery bifurcation model. J. Biomech. 28 (7): 845-856, 1995.
[8] Zhao S.Z., Xu X.Y., Hughes A.D., Thom S.A., Stanton A.V., Ariff B., Lon, Q.: Blood flow
and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurca-
tion. J. Biomech. 33 (8): 975-984, 2000.
[9] Jin S., Oshinski J., Giddens D.P.: Effects of wall motion and compliance on flow patterns in
the ascending aorta. J. Biomech. Eng. 125 (3), 347-354, 2003.
[10] Torii R., Keegan J., Wood N.B., Dowsey A.W., Hughes A.D., Yang G.Z., Firmin D.N., Thom
S.A., Xu X.Y.: MR image-based geometric and hemodynamic investigation of the right coro-
nary artery with dynamic vessel motion. Ann. Biomed. Eng. 38 (8), 2606-2620, 2010.
[11] Steinman D.A., Thomas J.B., Ladak H.M., Milner J.S., Rutt B.K., Spence J.D.: Reconstruc-
tion of carotid bifurcation hemodynamics and wall thickness using computational fluid dy-
namics and MRI. Magn. Reson. Med. 47 (1), 149-159, 2002.
[12] Antiga L., Wasserman B.A., Steinman D.A.: On the overestimation of early wall thickening
at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque
imaging. Magn. Reson. Med. 60 (5), 1020-1028, 2008.
[13] Steinman D.A., Antiga L., Wasserman B.A.: Overestimation of cerebral aneurysm wall thick-
ness by black blood MRI? J. Magn. Reson. Imaging 31 (3), 766, 2010.
[14] Kips J., Vanmolkot F., Mahieu D., Vermeersch S., Fabry I., de Hoon J., Van Bortel L., Segers
P.: The use of diameter distension waveforms as an alternative for tonometric pressure to
assess carotid blood pressure. Physiol. Meas. 31 (4), 543-553, 2010.
[15] Thomas J.B., Milner J.S., Rutt B.K., Steinman D.A.: Reproducibility of image-based compu-
tational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31 (2),
132-141, 2003.
[16] Cebral J.R., Putman C.M., Pergolesi R., Burgess J., Yim P.: Multi-modality image-based
models of carotid artery hemodynamics. Proc. SPIE Medical Imaging 5369 , 529-538, 2004.
Search WWH ::




Custom Search