Biomedical Engineering Reference
In-Depth Information
Algorithm 2 Decoupled time-marching for the heart-torso system.
1. Ionic state: find w n + 1
X H , h such that
τ w n + 1
) ξ =
+ g ( V m , w n + 1
0
Ω H
X H , h ;
2. Transmembrane potential: find V n + 1
m
for all
ξ
X H , h such that
m
Ω H τ V n + 1
V n + 1
m
u e · ∇φ
χ
φ +
Ω H σ
· ∇φ +
Ω H σ
i
i
m
I n + 1
app
) φ
V m ,
w n + 1
=
I ion (
Ω H
for all φ X H , h ;
3. Extracellular potential: find u n + 1
e
X H , h such that
t
T
V m · ∇ψ + γσ
u n + 1
e
u n + 1
e
Ω H ( σ i + σ
)
· ∇ψ +
Ω H σ i
ψ
e
h
Σ
T
Σ σ T u T · n T ψ + γσ
u T ψ
=
h
Σ
for all ψ X H , h ;
4. Torso potential: find u n + 1
T
X T , h
T
T
· ∇ζ + γσ
Σ σ T u T · n T ζ + γσ
Ω T σ T u n + 1
u n + 1
T
u n + 1
e
ζ =
ζ
T
h
h
Σ
Σ
X T , h ;
5. Go to next time-step.
for all
ζ
Note that, since the (quasi-static) time discretization of (4.8) 3 , 4 does not generate
numerical dissipation in time, a naive Dirichlet-Neumann explicit coupling, obtained
by enforcing
u n + 1
T
u e
=
Σ ,
on
u n + 1
e
u n + T ·
σ e
·
n
= σ T
n T
on
Σ ,
might lead to numerical instability.
The next result, proved in [25], establishes the energy-based stability of Algo-
rithm 2. There, E H u e ,
V m ) denotes the discrete bidomain energy
arising in the stability estimates provided by Theorem 2. For instance, in the case
(
V m (resp. E H u e ,
u e ,
V m )=(
u e ,
V m )
,wehave
E H u e ,
V m def
=
w 0
, Ω H + χ m V m
, Ω H + τ σ
V m
, Ω H + τ σ
u e
2
2
2
0
2
0
2
0
2
0
i
i
, Ω H ,
Search WWH ::




Custom Search