Biomedical Engineering Reference
In-Depth Information
τ
(ms)
Coupled
G-S
Jacobi
0.25
0.50
1.00
1.25
1.50
Fig. 4.7. Top : stability sensitivity to time-step size ( indicates numerical instability). Bottom : time
convergence history of the transmembrane potential error for Coupled (
u e ,
V m )=(
u n + 1
e
V n + 1
m
(
,
)
),
u e ,
V m )=(
u e ,
V n + 1
m
u e ,
V m )=(
u e ,
V m )
Gauss-Seidel (
(
)
) and Jacobi
(
bidomain time-marching
schemes
Note that the cardiac subproblem (steps 1-3) can be solved independently of the
torso
subproblem
(step
4).
In
particular,
the
Gauss-Seidel-Robin
algorithm
u e ,
V m )=(
V n + 1
m
u e ,
V m )=(
u e ,
u e ,
V m )
(
)
, and the Jacobi-Robin algorithm
(
lead to
a fully decoupled computation of w n + 1 , V n + 1
m
, u n + 1
e
and u n + 1
T
. In other words, steps
1-4 are decoupled and can be performed sequentially.
u e ,
V m )=(
u e ,
V n + 1
m
u e ,
V m )=(
u e ,
V m )
Remark 8. The choices
(
)
or
(
in Algorithm 2
allow for fully decoupled computation of w n + 1 , V n + 1
m
e and u n + T without the
need to resort to monodomain and uncoupling approximations (see Sect. 4.4).
, u n + 1
Remark 9. The interface coupling between steps 3 and 4 of Algorithm 2 corresponds
to the following Robin-Robin-based explicit time-discretization of (4.7):
t
T
t
T
+ γσ
+ γσ
u n + 1
u n + 1
u T ·
u T
σ
n
= σ
n T
·
on
Σ ,
e
e
e
T
h
h
(4.21)
t
T
t
T
n T + γσ
n T + γσ
u n + T ·
u n + 1
T
u T ·
u n + 1
e
σ T
= σ T
on
Σ .
h
h
Search WWH ::




Custom Search