Biomedical Engineering Reference
In-Depth Information
- Electrons transmitted by elastic scattering are used in TEM or TEM/STEM
to identify the microstructure through the combination of conventional modes:
bright-field, dark-field, weak-beam, microdiffraction, lattice fringe, and high-
resolution imaging modes. They will be used to obtain structural imaging, crys-
tallography, chemical and spectroscopic imaging, and chemical and spectroscopic
data.
- Electrons transmitted by inelastic scattering will be used to identify the chemical
nature of the elements, the nature of chemical bonds, and the atomic environment
(EELS in a TEM, TEM/STEM, or STEM).
Table 3.2 lists the different responses to the electron-matter interaction, the char-
acteristics of these signals, the image information, the equipment used, as well as
the resolution of these images.
For bulk samples , the SEM will make it possible to study morphology with good
resolution (1 nm), as well as to perform semi-quantitative or quantitative elemental
analysis on the scale of a few nanometers. The latest-generation SEMs produce even
better results, as they are equipped with FEG electron sources.
If good resolution power is desired, then it is necessary to limit the excited vol-
ume. To do this, it is necessary to work on thin samples in TEM, TEM/STEM, or
STEM. The goal is to be able to fully characterize the specimen, i.e., to precisely
determine the texture and the local microstructure, as well as to be able to determine
the local chemistry of particles a few nanometers in size.
Bibliography
Ammou, M. (1989). Microcaractérisation des solides. Méthodes d'observation et d'analyse ,
CRAM CNRS S. Antipolis.
Angenault, J. (2001). Symétrie et structure cristallochimique du solide . Vuibert, Paris.
Ayache, J. and Morniroli, J.-P. (2001). Microscopie des défauts cristallins (ed. Société Française
des Microscopies). École d'Oléron, Paris.
Barna, A., Radnoczi, G., and Pecz, B. (1997). Preparation techniques for electron microscopy. In
Handbook of Microscopy Application in Material Science . VCH, Weinheim.
Bethge, H. and Heydenreich, J. (1987). Electron Microscopy in Solid State Physics . Elsevier,
Amsterdam.
Colliex, C. (2004). La microscopie électronique .Quesais-je-PUF.
Delain, E., Fourcade, A., Révet, B., and Mory, C. (1992). Microsc. Microanal. Microstruct. , 3, 175.
Delain, E. and Le Cam, E. (1995). The spreading of nucleic acids. In Visualization of Nucleic Acids
(ed. G. Morel). CRC Press, Boca Raton, London, Tokyo.
Eberhart, J.-P. (1989). Méthodes Physiques d'étude des minéraux et des matériaux solides . Dunod
BORDAS, Paris.
Georges, J.-M. (2000). Frottement, usure et lubrification, Sciences et techniques de l'ingénieur .
Eyrolles, Paris.
Goldstein, J.I., Newbury, D.E., Echlin, D.C., Romig, A.D., Lyman, C.E., Fiori, C., and Lifshin,
E. (2003). Scanning Electron Microscopy and X-Ray Microanalysis , 3rd edition. Kluwer
Academic/Plenum Publishers, New York.
Goodhew, P.J. (1985). Thin foil preparation for electron microscopy. In Practical Methods in
Electron Microscopy , vol. II. Elsevier, Amsterdam.
Search WWH ::




Custom Search