Chemistry Reference
In-Depth Information
namic sensing range, response time and hysteresis were comparable to the alu-
mina/gold sensor substrate. Small differences in performance can be attributed to
sensor design rather than substrate characteristics. Our future research into chemi-
cal sensing will test the versatility of the Kapton substrate in other sensing appli-
cations. As a proof of concept, the morphology of the carbonized Kapton fila-
ments and its effect on the sensor's performance is currently being investigated
using humidity as the sensed analyte of interest.
Acknowledgements
We would like to thank Dr. Matthew H. Ervin of the Army Research Labs for re-
cording the electron scanning microscope images of our carbonized filaments. We
would also like to thank DuPont for generously donating the Kapton.
REFERENCES
1. J.A. Dickson and R.M. Goodman, Proc. IEEE International Symposium on Circuits and Sys-
tems, 4, 341 (2000).
2. A.C. Partridge, M.L. Jansen and W.M. Arnold, Mater. Sci. Eng. C, 12, 37 (2000).
3. W. Lu and G.G. Wallace, Electroanalysis, 9, 454 (1997).
4. R.C. Hughes, M.P. Eastman, W.G. Yelton, A.J. Ricco, S.V. Patel and M. W. Jenkins, J. Electro-
chem. Soc., 146, 3907 (1999).
5. A.R. Hopkins and N.S. Lewis, Anal. Chem. 73, 884 (2001).
6. A. Guadarrama, J.A. Fernandez, M. Iniguez, J. Souto and J.A. de Saja, Sensors Actuators B, 77,
401 (2001).
7. A.L. Jenkins, R. Yin and J.L. Jensen, Analyst, 126, 798 (2001).
8. G.M. Murray, B.R. Arnold, A.C. Kelly and O.M. Uy, Proc. SPIE, 4206, 131 (2001).
9. P. Marin-Franch, D.L. Tunnicliffe and D.K. Das-Gupta, Mater. Res. Innovations, 4, 334 (2001).
10. R.C. Hughes, W.G. Yelton, K.B. Pfeifer and S.V. Patel, J. Electrochem. Soc, 148, H37 (2001).
11. L. Chen, D.W. McBranch and D.G. Whitten, Proc. Natl. Acad. Sci. (USA), 96, 12287 (1999).
12. F. Opekar and K. Stulk, Analy. Chimica Acta, 385, 151 (1999).
13. H.J. Lee, P.D. Beattie and H.H. Girault, J. Electroanalytical Chem., 440, 73 (1997).
14. G. Gauglitz and A. Bretch, Anal. Chim. Acta., 347, 219 (1997).
15. P.M. Kramer, B.A. Baumann and P.G. Stoks, Anal. Chim. Acta., 347, 187 (1997).
16. T.A. Sergeyeva, S.A. Piletsky, A.A. Brovko, E.A. Slinchenko, L.M. Sergeeva and A.V. El'skaya,
Anal. Chim. Acta., 392, 105 (1999).
17. B.J. Doleman, M.C. Longergan, E.J. Severin, T.P. Vaid and N.S. Lewis, Anal. Chem., 70, 4177
(1998).
18. R. Srinivasan, R.R. Hall, W.D. Wilson, W.D. Loehle and D.C. Allbee, Synth. Metals, 66, 301
(1994).
19. T. Feurer, R. Sauerbrey, M.C. Smayling and B.J. Story, Appl. Phys. A, 56, 275 (1993).
20. J. Davenas, Appl. Surf. Sci., 36, 539 (1989).
21. S.F. Dinetz, E.J. Bird, R.L. Wagner and A.W. Fountain III, J. Anal. Appl. Pyrolysis, 63, 241
(2002).
22. R. Srinivasan, R.R. Hall and D.C. Allbee, Appl. Phys. Lett., 63, 3382 (1993).
23. M. Schumann, R. Sauerbrey and M.C. Smayling, Appl. Phys. Lett., 58, 428 (1991).
24. G.H. Wynn and A.W. Fountain III, J. Electrochem. Soc., 144, 3769 (1997).
25. Y. Sakai, M. Matuguchi, Y. Sadaoka and K. Hirayama, J. Electrochem. Soc., 140, 432 (1993).
26. Y. Li, M.J. Lang, N. Camaioni and G. Casalbore-Miceli, Sensors Actuators B, 77, 625 (2001).
Search WWH ::




Custom Search